\parinterval 虽然在这段时间,使用机器进行翻译的议题越加火热,但是事情并不总是一帆风顺,怀疑论者对机器翻译一直存有质疑,并很容易找出一些机器翻译无法解决的问题。自然地,人们也期望能够客观地评估一下机器翻译的可行性。当时美国基金资助组织委任自动语言处理咨询会承担了这项任务。经过近两年的调查与分析,该委员会于1966年11月公布了一个题为\emph{LANGUAGE AND MACHINES}的报告(图\ref{fig:1-5}),即ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
\parinterval 虽然在这段时间,使用机器进行翻译的议题越加火热,但是事情并不总是一帆风顺,怀疑论者对机器翻译一直存有质疑,并很容易找出一些机器翻译无法解决的问题。自然地,人们也期望能够客观地评估一下机器翻译的可行性。当时美国基金资助组织委任自动语言处理咨询会承担了这项任务。经过近两年的调查与分析,该委员会于1966年11月公布了一个题为\emph{LANGUAGE AND MACHINES}的报告(图\ref{fig:1-4}),即ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
\node(encoder)[coder, above of = x,yshift=4em]{{编码器}};
\node(decoder_left)[coder, above of = encoder, yshift=6em,fill=blue!25]{{解码器}};
\node(encoder)[coder, above of = x,yshift=4em]{\large{编码器}};
\node(decoder_left)[coder, above of = encoder, yshift=6em,fill=blue!20]{\large{解码器}};
\node(y_hat)[above of = decoder_left, yshift=4em]{{$y$}};
\node(y)[above of = decoder_left, xshift=-6em]{{$y_{<}$}};
\node(decoder_right)[coder, above of = encoder, xshift=11em,fill=yellow!25]{{解码器}};
\node(decoder_right)[coder, above of = encoder, xshift=11em,fill=yellow!20]{\large{解码器}};
\node(figure)[draw=white,above of = decoder_right,yshift=6.5em,scale=0.25] {\includegraphics[width=0.62\textwidth]{./Chapter17/Figures/figure-bank-without-attention.jpg}};
\node [anchor=south,scale=1.2] (node1) at ([xshift=-2.5em,yshift=4.5em]y.north) {\small{$x$:源语言文本数据}};
\node [anchor=north,scale=1.2] (node2) at ([xshift=0.57em]node1.south){\small{$y$:目标语言文本数据}};
\node [anchor=south,scale=1.2] (node1) at ([xshift=-2.5em,yshift=4.5em]y.north) {{$x$:源语言文本数据}};
\node [anchor=north,scale=1.2] (node2) at ([xshift=0.57em]node1.south){{$y$:目标语言文本数据}};
\node[draw=white,scale=0.6] (input) at (0,0){\includegraphics[width=0.62\textwidth]{./Chapter17/Figures/figure-bank-without-attention.jpg}};(1.9,-1.4);
\node[anchor=west] (label1) at ([xshift=-3.5em]input.west) {\begin{tabular}{l}{\normalsize{图片:}}\end{tabular}};
\node[anchor=south] (label2) at ([yshift=-6em]label1.south) {\begin{tabular}{l}{\normalsize{源文:}}\end{tabular}};
\node[anchor=south] (english1) at ([xshift=-0.35em,yshift=-2.3em]input.south) {\begin{tabular}{l}{\large{A\; girl\; jumps\; off\; a\;{\red{\underline{bank}}}\quad .}}\end{tabular}};
\node[anchor=south] (label2) at ([yshift=-6em]label1.south) {\begin{tabular}{l}{\normalsize{源语言:}}\end{tabular}};
\node[anchor=south] (english1) at ([xshift=-0.28em,yshift=-2.3em]input.south) {\begin{tabular}{l}{\large{A\; girl\; jumps\; off\; a\;{\red{\underline{bank}}}\quad .}}\end{tabular}};
\draw[->,very thick]([xshift=-1.4em]trans.west) to (trans.west);
\draw[->,very thick](trans.east) to ([xshift=1.4em]trans.east);
\node[anchor=east] (de1) at ([xshift=4.5cm,yshift=-0.1em]trans.east) {\begin{tabular}{l}{\normalsize{译文:}}{\normalsize{一个/女孩/从/{\red{河床}}/}}\end{tabular}};
\node[anchor=south] (de2) at ([xshift=-0em,yshift=-1.5em]de1.south) {\begin{tabular}{l}{\normalsize{上/跳下来/。}}\end{tabular}};
\draw[->,thick]([xshift=-1.4em]trans.west) to (trans.west);
\node[anchor=east] (de1) at ([xshift=5.2cm,yshift=-0.1em]trans.east) {\begin{tabular}{l}{\normalsize{目标语言:}}{\normalsize{一个/女孩/从/{\red{河床}}/}}\end{tabular}};
\node[anchor=south] (de2) at ([xshift=1.1em,yshift=-1.5em]de1.south) {\begin{tabular}{l}{\normalsize{上/跳下来/。}}\end{tabular}};
\draw[->,thick](trans.east) to ([xshift=0.5em,yshift=0.1em]de1.west);
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,结果的损失则越小。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\textrm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,并对“块数”较多的机器译文给予惩罚。例如图\ref{fig:4-6}显示的最终词对齐结果中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\textrm{count}_{\textrm{chunks}}$表示匹配的块数。
\parinterval 在上文提到的评价指标中,无论是准确率、召回率还是$\textrm F_{mean}$,都是基于单个词汇信息衡量译文质量,而忽略了语序问题。为了将语序问题考虑进来,Meteor会考虑更长的匹配:将机器译文按照最长匹配长度分块,由于“块数”较多的机器译文与参考答案的对齐更加散乱,意味着其语序问题更多,因此Meteor会对这样的译文给予惩罚。例如图\ref{fig:4-6}显示的最终词对齐结果中,机器译文被分为了三个“块”——“Can I have it”、“like he”、“?”在这种情况下,看起来上例中的准确率、召回率都还不错,但最终会受到很严重的惩罚。这种罚分机制能够识别出机器译文中的词序问题,因为当待测译文词序与参考答案相差较大时,机器译文将会被分割得比较零散,这种惩罚机制的计算公式如式\eqref{eq:4-11},其中$\textrm{count}_{\textrm{chunks}}$表示匹配的块数。
\parinterval 如图\ref{fig:7-19}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别式模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
\parinterval 如图\ref{fig:7-16}所示,按照从左到右的顺序对一个句子“在/桌子/上/的/苹果”进行翻译,得到的译文“on the table the apple”的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别式模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
@@ -788,14 +787,14 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\subsection{翻译候选匹配}
\parinterval 在解码时,首先要知道每个源语言短语可能的译文都是什么。对于一个源语言短语,每个可能的译文也被称作翻译候选。实现翻译候选的匹配很简单。只需要遍历输入的源语言句子中所有可能的短语,之后在短语表中找到相应的翻译即可。比如,图\ref{fig:7-27}展示了句子“桌子/上/有/一个/苹果”的翻译候选匹配结果。可以看到,不同的短语会对应若干翻译候选。这些翻译候选会保存在所对应的范围(被称为跨度)中。这里,跨度$[a,b]$表示从第$a+1$个词开始到第$b$个词为止所表示的词串。比如,“upon the table” 是短语“桌子/上/有”的翻译候选,即对应源语言跨度[0,3]。
\parinterval 在解码时,首先要知道每个源语言短语可能的译文都是什么。对于一个源语言短语,每个可能的译文也被称作翻译候选。实现翻译候选的匹配很简单。只需要遍历输入的源语言句子中所有可能的短语,之后在短语表中找到相应的翻译即可。比如,图\ref{fig:7-24}展示了句子“桌子/上/有/一个/苹果”的翻译候选匹配结果。可以看到,不同的短语会对应若干翻译候选。这些翻译候选会保存在所对应的范围(被称为跨度)中。这里,跨度$[a,b]$表示从第$a+1$个词开始到第$b$个词为止所表示的词串。比如,“upon the table” 是短语“桌子/上/有”的翻译候选,即对应源语言跨度[0,3]。
\parinterval 那激活函数又是什么?一个神经元在接收到经过线性变换的结果后,通过激活函数的处理,得到最终的输出$ y $。激活函数的目的是解决实际问题中的非线性变换,线性变换只能拟合直线,而激活函数的加入,使神经网络具有了拟合曲线的能力。 特别是在实际问题中,很多现象都无法用简单的线性关系描述,这时可以使用非线性激活函数来描述更加复杂的问题。常见的非线性激活函数有Sigmoid、ReLU、Tanh等。图\ref{fig:9-15}中列举了几种激活函数的形式。
\parinterval 那激活函数又是什么?一个神经元在接收到经过线性变换的结果后,通过激活函数的处理,得到最终的输出$ y $。激活函数的目的是解决实际问题中的非线性变换,线性变换只能拟合直线,而激活函数的加入,使神经网络具有了拟合曲线的能力。 特别是在实际问题中,很多现象都无法用简单的线性关系描述,这时可以使用非线性激活函数来描述更加复杂的问题。常见的非线性激活函数有Sigmoid、ReLU、Tanh等。图\ref{fig:9-15}和\ref{fig:9-15-2}中列举了几种激活函数的形式。