Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
42b86972
Commit
42b86972
authored
Dec 18, 2020
by
zengxin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
19
parent
ea51fbdd
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
Chapter19/chapter19.tex
+1
-1
没有找到文件。
Chapter19/chapter19.tex
查看文件 @
42b86972
...
...
@@ -49,7 +49,7 @@
\parinterval
除了翻译品质维度以外,机器翻译技术应用可以从三个维度来讨论,包括语种维度、领域维度和应用模式维度。机器翻译技术应该为全球用户服务,提供支持所有国家至少一种官方语言的翻译能力,实现任意两种语言的自动互译,当然语种数量越多越好。面临的最大问题就是双语数据稀缺的问题,上述已经讨论了这个问题。关于领域维度,通用领域翻译系统对于垂直领域应用来说是不够充分的,最典型的问题在于垂直领域术语翻译的问题,计算机不能无中生有,虽然存在瞎猫碰死耗子,但没有办法充分解决垂直领域术语OOV翻译问题。比较直接可行的解决方案至少有两个,一是引入垂直领域术语双语词典用于改善机器翻译效果;二是收集加工一定规模的垂直领域双语句对来优化训练翻译模型。这两种工程方法虽然简单,但效果不错,相对来说,两者结合才能更加有效,但问题是垂直领域双语句对的收集很多时候代价太高,不太可行,本质上就转换成为垂直领域资源稀缺问题和领域自适应学习问题,另外也可以引入小样本学习、迁移学习和联合学习等机器学习技术来改善这个问题。
\parinterval
应用模式维度能够体现丰富多彩的机器翻译应用和服务,还可以细分到具体应用场景,这个我们就不一一列举,后面可能会讨论到一些具体应用。这里主要讨论一下应用模式的软硬件环境。通常机器翻译典型应用属于在线翻译公有云服务,用户接入非常简单,只需要联网使用浏览器就可以自由免费使用。在某些具体行业应用中,用户对数据翻译安全性和保密性要求非常高,其中可能还会涉及到个性化订制要求,这一点在线翻译公有云服务就无法满足用户需求,本地部署机器翻译私有云和离线机器翻译技术和服务成为了新的应用模式。本地部署私有云的问题在于用户需要自己购买GPU服务器和建机房,硬件投入和代价也不低,也许将来会出来一种新的应用模式:在线私有云
—
专有云,有点像服务托管模式。最后一种云服务就是混合云,简单来说就是公有云、私有云和专有云混合体而已。
\parinterval
应用模式维度能够体现丰富多彩的机器翻译应用和服务,还可以细分到具体应用场景,这个我们就不一一列举,后面可能会讨论到一些具体应用。这里主要讨论一下应用模式的软硬件环境。通常机器翻译典型应用属于在线翻译公有云服务,用户接入非常简单,只需要联网使用浏览器就可以自由免费使用。在某些具体行业应用中,用户对数据翻译安全性和保密性要求非常高,其中可能还会涉及到个性化订制要求,这一点在线翻译公有云服务就无法满足用户需求,本地部署机器翻译私有云和离线机器翻译技术和服务成为了新的应用模式。本地部署私有云的问题在于用户需要自己购买GPU服务器和建机房,硬件投入和代价也不低,也许将来会出来一种新的应用模式:在线私有云
\ \dash
\
专有云,有点像服务托管模式。最后一种云服务就是混合云,简单来说就是公有云、私有云和专有云混合体而已。
\parinterval
离线机器翻译技术可以为更小型的智能翻译终端设备提供服务,比如大家熟悉的翻译机、翻译笔、翻译耳机等智能翻译设备,在不联网的情况下能够实现高品质机器翻译功能,相当于将机器翻译系统安装在智能翻译终端设备上,这个应用模式具有很大的潜力。但需要解决的问题很多,首先是模型大小、翻译速度和翻译品质三大问题,之后是需要考虑不同操作系统问题(Linux、Android Q和iOS),最后还需要考虑不同架构的CPU芯片,比如x86、MIPS、ARM架构等,都需要进行智能适配兼容,特别是国产化机器翻译解决方案需求也在不断上升,本质上需要有能力兼容国产化操作系统和芯片。将来离线翻译系统还可以安装到办公设备上,比如传真机、打印机和复印机等,实现支持多语言的智能办公。目前人工智能芯片发展速度非常快,其实机器翻译和语音处理雷同,目前市面上语音技术芯片已近广泛使用,机器翻译芯片的研发估计不是技术问题,最大的问题的应用场景和上下游的应用支撑,一旦这个时机成熟,机器翻译芯片研发和应用也有可能会爆发。
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论