Commit 44151631 by 曹润柘

更新 chapter7.tex

parent 0f66a562
......@@ -464,7 +464,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval 除此之外,一些外部工具也可以用来获取词对齐,如Fastalign\upcite{dyer2013a}、Berkeley Word Aligner\upcite{taskar2005a}等。词对齐的质量通常使用词对齐错误率(AER)来评价\upcite{DBLP:conf/coling/OchN00},但是词对齐并不是一个独立的系统,它一般会服务于其他任务。因此,也可以使用下游任务来评价词对齐的好坏。比如,改进词对齐后观察机器翻译系统性能的变化。
\parinterval 除此之外,一些外部工具也可以用来获取词对齐,如Fastalign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等。词对齐的质量通常使用词对齐错误率(AER)来评价\upcite{DBLP:conf/coling/OchN00},但是词对齐并不是一个独立的系统,它一般会服务于其他任务。因此,也可以使用下游任务来评价词对齐的好坏。比如,改进词对齐后观察机器翻译系统性能的变化。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -651,7 +651,7 @@ dr = start_i-end_{i-1}-1
\parinterval 想要得到最优的特征权重,最简单的方法是枚举所有的特征权重可能的取值,然后评价每组权重所对应的翻译性能,最后选择最优的特征权重作为调优的结果。但是特征权重是一个实数值,因此可以考虑把实数权重进行量化,即把权重看作是在固定间隔上的取值,比如,每隔0.01取值。即使是这样,同时枚举多个特征的权重也是非常耗时的工作,当特征数量增多时这种方法的效率仍然很低。
\parinterval 这里介绍一种更加高效的特征权重调优方法$\ \dash \ ${\small\bfnew{最小错误率训练}}\index{最小错误率训练}(Minimum Error Rate Training\index{Minimum Error Rate Training},MERT)。最小错误率训练是统计机器翻译发展中代表性工作,也是机器翻译领域原创的重要技术方法之一\upcite{och2003minimum}。最小错误率训练假设:翻译结果相对于标准答案的错误是可度量的,进而可以通过降低错误数量的方式来找到最优的特征权重。假设有样本集合$S = \{(s_1,\seq{r}_1),...,(s_N,\seq{r}_N)\}$$s_i$为样本中第$i$个源语言句子,$\seq{r}_i$为相应的参考译文。注意,$\seq{r}_i$ 可以包含多个参考译文。$S$通常被称为{\small\bfnew{调优集合}}\index{调优集合}(Tuning Set)\index{Tuning Set}。对于$S$中的每个源语句子$s_i$,机器翻译模型会解码出$n$-best推导$\hat{\seq{d}}_{i} = \{\hat{d}_{ij}\}$,其中$\hat{d}_{ij}$表示对于源语言句子$s_i$得到的第$j$个最好的推导。$\{\hat{d}_{ij}\}$可以被定义如下:
\parinterval 这里介绍一种更加高效的特征权重调优方法$\ \dash \ ${\small\bfnew{最小错误率训练}}\index{最小错误率训练}(Minimum Error Rate Training\index{Minimum Error Rate Training},MERT)。最小错误率训练是统计机器翻译发展中代表性工作,也是机器翻译领域原创的重要技术方法之一\upcite{DBLP:conf/acl/Och03}。最小错误率训练假设:翻译结果相对于标准答案的错误是可度量的,进而可以通过降低错误数量的方式来找到最优的特征权重。假设有样本集合$S = \{(s_1,\seq{r}_1),...,(s_N,\seq{r}_N)\}$$s_i$为样本中第$i$个源语言句子,$\seq{r}_i$为相应的参考译文。注意,$\seq{r}_i$ 可以包含多个参考译文。$S$通常被称为{\small\bfnew{调优集合}}\index{调优集合}(Tuning Set)\index{Tuning Set}。对于$S$中的每个源语句子$s_i$,机器翻译模型会解码出$n$-best推导$\hat{\seq{d}}_{i} = \{\hat{d}_{ij}\}$,其中$\hat{d}_{ij}$表示对于源语言句子$s_i$得到的第$j$个最好的推导。$\{\hat{d}_{ij}\}$可以被定义如下:
\begin{eqnarray}
\{\hat{d}_{ij}\} = \arg\max_{\{d_{ij}\}} \sum_{i=1}^{M} \lambda_i \cdot h_i (d,\seq{t},\seq{s})
......@@ -912,7 +912,7 @@ dr = start_i-end_{i-1}-1
\vspace{0.5em}
\item 统计机器翻译中使用的栈解码方法源自Tillmann等人的工作\upcite{tillmann1997a}。这种方法在Pharaoh\upcite{DBLP:conf/amta/Koehn04}、Moses\upcite{Koehn2007Moses}等开源系统中被成功的应用,在机器翻译领域产生了很大的影响力。特别是,这种解码方法效率很高,因此在许多工业系统里也大量使用。对于栈解码也有很多改进工作,比如,早期的工作考虑剪枝或者限制调序范围以加快解码速度\upcite{DBLP:conf/acl/WangW97,DBLP:conf/coling/TillmannN00,DBLP:conf/iwslt/ShenDA06a,robert2007faster}。随后,也有研究工作从解码算法和语言模型集成方式的角度对这类方法进行改进\upcite{DBLP:conf/acl/HeafieldKM14,DBLP:conf/acl/WuebkerNZ12,DBLP:conf/iwslt/ZensN08}
\vspace{0.5em}
\item 统计机器翻译的成功很大程度上来自判别式模型引入任意特征的能力。因此,在统计机器翻译时代,很多工作都集中在新特征的设计上。比如,可以基于不同的统计特征和先验知识设计翻译特征\upcite{och2004smorgasbord,Chiang200911,gildea2003loosely},也可以模仿分类任务设计大规模的稀疏特征\upcite{chiang2008online}。另一方面,模型训练和特征权重调优也是统计机器翻译中的重要问题,除了最小错误率训练,还有很多方法,比如,最大似然估计\upcite{koehn2003statistical,DBLP:journals/coling/BrownPPM94}、判别式方法\upcite{Blunsom2008A}、贝叶斯方法\upcite{Blunsom2009A,Cohn2009A}、最小风险训练\upcite{smith2006minimum,li2009first}、基于Margin的方法\upcite{watanabe2007online,Chiang200911}以及基于排序模型的方法(PRO)\upcite{Hopkins2011Tuning,dreyer2015apro}。实际上,统计机器翻译的训练和解码也存在不一致的问题,比如,特征值由双语数据上的极大似然估计得到(没有剪枝),而解码时却使用束剪枝,而且模型的目标是最大化机器翻译评价指标。对于这个问题也可以通过调整训练的目标函数进行缓解\upcite{XiaoA,marcu2006practical}
\item 统计机器翻译的成功很大程度上来自判别式模型引入任意特征的能力。因此,在统计机器翻译时代,很多工作都集中在新特征的设计上。比如,可以基于不同的统计特征和先验知识设计翻译特征\upcite{och2004smorgasbord,Chiang200911,gildea2003loosely},也可以模仿分类任务设计大规模的稀疏特征\upcite{DBLP:conf/emnlp/ChiangMR08}。另一方面,模型训练和特征权重调优也是统计机器翻译中的重要问题,除了最小错误率训练,还有很多方法,比如,最大似然估计\upcite{koehn2003statistical,DBLP:journals/coling/BrownPPM94}、判别式方法\upcite{Blunsom2008A}、贝叶斯方法\upcite{Blunsom2009A,Cohn2009A}、最小风险训练\upcite{smith2006minimum,li2009first}、基于Margin的方法\upcite{watanabe2007online,Chiang200911}以及基于排序模型的方法(PRO)\upcite{Hopkins2011Tuning,dreyer2015apro}。实际上,统计机器翻译的训练和解码也存在不一致的问题,比如,特征值由双语数据上的极大似然估计得到(没有剪枝),而解码时却使用束剪枝,而且模型的目标是最大化机器翻译评价指标。对于这个问题也可以通过调整训练的目标函数进行缓解\upcite{XiaoA,marcu2006practical}
\vspace{0.5em}
\item 短语表是基于短语的系统中的重要模块。但是,简单的利用基于频次的方法估计得到的翻译概率无法很好的处理低频短语。这时就需要对短语表进行平滑\upcite{DBLP:conf/iwslt/ZensN08,DBLP:conf/emnlp/SchwenkCF07,boxing2011unpacking,DBLP:conf/coling/DuanSZ10}。另一方面,随着数据量的增长和抽取短语长度的增大,短语表的体积会极具膨胀,这也大大增加了系统的存储消耗,同时过大的短语表也会带来短语查询效率的下降。针对这个问题,很多工作尝试对短语表进行压缩。一种思路是限制短语的长度\upcite{DBLP:conf/naacl/QuirkM06,DBLP:journals/coling/MarinoBCGLFC06};另一种广泛使用的思路是使用一些指标或者分类器来对短语进行剪枝,其核心思想是判断每个短语的质量\upcite{DBLP:conf/emnlp/ZensSX12},并过滤掉低质量的短语。代表性的方法有:基于假设检验的剪枝\upcite{DBLP:conf/emnlp/JohnsonMFK07}、基于熵的剪枝\upcite{DBLP:conf/emnlp/LingGTB12}、两阶段短语抽取方法\upcite{DBLP:conf/naacl/ZettlemoyerM07}、基于解码中短语使用频率的方法\upcite{DBLP:conf/naacl/EckVW07}等。此外,短语表的存储方式也是在实际使用中需要考虑的问题。因此,也有研究者尝试使用更加紧凑、高效的结构保存短语表。其中最具代表性的结构是后缀数组(Suffix Arrays),这种结构可以充分利用短语之间有重叠的性质,发幅减少了重复存储\upcite{DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/naacl/ZensN07,2014Dynamic}
\vspace{0.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论