Commit 4950b5b5 by zengxin

合并分支 'zengxin' 到 'caorunzhe'

Zengxin

查看合并请求 !221
parents 960e7b6d b8348a05
......@@ -174,7 +174,7 @@
\end{figure}
%----------------------------------------------
\parinterval 此外,编码端和解码端都有输入的词序列。编码端的词序列输入是为了对其进行表示,进而解码端能从编码端访问到源语言句子的全部信息。解码端的词序列输入是为了进行目标语的生成,本质上它和语言模型是一样的,在得到前$n-1$个单词的情况下输出第$n$个单词。除了输入的词序列的词嵌入,Transformer中也引入了位置嵌入,以表示每个位置信息。原因是,自注意力机制没有显性地对位置进行表示,因此也无法考虑词序。在输入中引入位置信息可以让自注意力机制间接地感受到每个词的位置,进而保证对序列表示的合理性。最终,整个模型的输出由一个Softmax层完成,它和循环神经网络中的输出层是完全一样的\ref{sec:10.3.2}节)
\parinterval 此外,编码端和解码端都有输入的词序列。编码端的词序列输入是为了对其进行表示,进而解码端能从编码端访问到源语言句子的全部信息。解码端的词序列输入是为了进行目标语的生成,本质上它和语言模型是一样的,在得到前$n-1$个单词的情况下输出第$n$个单词。除了输入的词序列的词嵌入,Transformer中也引入了位置嵌入,以表示每个位置信息。原因是,自注意力机制没有显性地对位置进行表示,因此也无法考虑词序。在输入中引入位置信息可以让自注意力机制间接地感受到每个词的位置,进而保证对序列表示的合理性。最终,整个模型的输出由一个Softmax层完成,它和循环神经网络中的输出层是完全一样的。
\parinterval 在进行更详细的介绍前,先利用图\ref{fig:12-39}简单了解一下Transformer模型是如何进行翻译的。首先,Transformer将源语“我\ \ 好”的{\small\bfnew{词嵌入}}\index{词嵌入}(Word Embedding)\index{Word Embedding}融合{\small\bfnew{位置编码}}\index{位置编码}(Position Embedding)\index{Position Embedding}后作为输入。然后,编码器对输入的源语句子进行逐层抽象,得到包含丰富的上下文信息的源语表示并传递给解码器。解码器的每一层,使用自注意力子层对输入解码端的表示进行加工,之后再使用编码-解码注意力子层融合源语句子的表示信息。就这样逐词生成目标语译文单词序列。解码器的每个位置的输入是当前单词(比如,“I”),而这个位置输出是下一个单词(比如,“am”),这个设计和标准的神经语言模型是完全一样的。
......@@ -270,7 +270,7 @@
\subsection{点乘注意力}
\parinterval\ref{sec:12.1.3}节中已经介绍,自注意力机制中至关重要的是获取相关性系数,也就是在融合不同位置的表示向量时各位置的权重。不同于\ref{sec:12.1.3}介绍的注意力机制的相关性系数计算方式,Transformer模型采用了一种基于点乘的方法来计算相关性系数。这种方法也称为{\small\bfnew{点乘注意力}}\index{点乘注意力}(Scaled Dot-Product Attention)\index{Scaled Dot-Product Attention}机制。它的运算并行度高,同时并不消耗太多的存储空间。
\parinterval\ref{sec:12.1}节中已经介绍,自注意力机制中至关重要的是获取相关性系数,也就是在融合不同位置的表示向量时各位置的权重。不同于第十章介绍的注意力机制的相关性系数计算方式,Transformer模型采用了一种基于点乘的方法来计算相关性系数。这种方法也称为{\small\bfnew{点乘注意力}}\index{点乘注意力}(Scaled Dot-Product Attention)\index{Scaled Dot-Product Attention}机制。它的运算并行度高,同时并不消耗太多的存储空间。
\parinterval 具体来看,在注意力机制的计算过程中,包含三个重要的参数,分别是Query,\\Key和Value。在下面的描述中,分别用$\vectorn{\emph{Q}}$$\vectorn{\emph{K}}$$\vectorn{\emph{V}}$对它们进行表示,其中$\vectorn{\emph{Q}}$$\vectorn{\emph{K}}$的维度为$L\times d_k$$\vectorn{\emph{V}}$的维度为$L\times d_v$。这里,$L$为序列的长度,$d_k$$d_v$分别表示每个Key和Value的大小,通常设置为$d_k=d_v=d_{model}$
......@@ -571,4 +571,17 @@ Transformer Deep(48层) & 30.2 & 43.1 & 194$\times 10^{6}$
%----------------------------------------------------------------------------------------
\section{小结及深入阅读}
\parinterval
\parinterval 编码器­-解码器框架提供了一个非常灵活的机制,因为开发者只需要设计编码器和解码器的结构就能完成机器翻译。但是,架构的设计是深度学习中最具挑战的工
作,优秀的架构往往需要长时间的探索和大量的实验验证,而且还需要一点点 “灵感”。前面介绍的基于循环神经网络的翻译模型和注意力机制就是研究人员通过长期
的实践发现的神经网络架构。本章介绍了一个全新的模型\ \dash \ Transformer,同时对很多优秀的技术进行了介绍。除了基础知识,关于自注意力机制和提高模型性能的技术还有很多可以讨论的地方:
\begin{itemize}
\vspace{0.5em}
\item 近两年,有研究已经发现注意力模型可以捕捉一些语言现象\upcite{DBLP:journals/corr/abs-1905-09418},比如,在Transformer 的多头注意力中,不同头往往会捕捉到不同的信息,比如,有些头对低频词更加敏感,有些头更适合词意消歧,甚至有些头可以捕捉句法信息。此外,由于注意力机制增加了模型的复杂性,而且随着网络层数的增多,神经机器翻译中也存在大量的冗余,因此研发轻量的注意力模型也是具有实践意义的方向\upcite{Xiao2019SharingAW}
\vspace{0.5em}
\item 神经机器翻译依赖成本较高的GPU设备,因此对模型的裁剪和加速也是很多系统研发人员所感兴趣的方向。比如,从工程上,可以考虑减少运算强度,比如使用低精度浮点数\upcite{Ott2018ScalingNM} 或者整数\upcite{DBLP:journals/corr/abs-1906-00532,Lin2020TowardsF8}进行计算,或者引入缓存机制来加速模型的推断\upcite{Vaswani2018Tensor2TensorFN};也可以通过对模型参数矩阵的剪枝来减小整个模型的体积\upcite{DBLP:journals/corr/SeeLM16};另一种方法是知识精炼\upcite{Hinton2015Distilling,kim-rush-2016-sequence}。 利用大模型训练小模型,这样往往可以得到比单独训练小模型更好的效果\upcite{DBLP:journals/corr/ChenLCL17}
\vspace{0.5em}
\item 自注意力网络作为Transformer模型中重要组成部分,近年来受到研究人员的广泛关注,尝试设计更高效地操作来替代它。比如,利用动态卷积网络来替换编码端与解码端的自注意力网络,在保证推断效率的同时取得了和Transformer相当甚至略好的翻译性能\upcite{Wu2019PayLA};为了加速Transformer处理较长输入文本的效率,利用局部敏感哈希替换自注意力机制的Reformer模型吸引了广泛学者的关注\upcite{Kitaev2020ReformerTE}。此外,在自注意力网络引入额外的编码信息能够进一步提高模型的表示能力。比如,引入固定窗口大小的相对位置编码信息\upcite{Shaw2018SelfAttentionWR,dai-etal-2019-transformer},或利用动态系统的思想从数据中学习特定的位置编码表示,具有更好的泛化能力\upcite{Liu2020LearningTE}。通过对Transformer模型中各层输出进行可视化分析,研究人员发现Transformer自底向上各层网络依次聚焦于词级-语法级-语义级的表示\upcite{Jawahar2019WhatDB}(Shallow-to-Deep Training for Neural Machine Translation(我的EMNLP,过两天挂arXiv)),因此在底层的自注意力网络中引入局部编码信息有助于模型对局部特征的抽象\upcite{Yang2018ModelingLF,DBLP:journals/corr/abs-1904-03107}
\vspace{0.5em}
\item 除了针对Transformer中子层的优化,网络各层之间的连接方式在一定程度上也能影响模型的表示能力。近年来针对网络连接优化的工作如下:在编码端顶部利用平均池化或权重累加等融合手段得到编码端各层的全局表示\upcite{Wang2018MultilayerRF,Bapna2018TrainingDN,Dou2018ExploitingDR,Wang2019ExploitingSC},利用之前各层表示来生成当前层的输入表示\upcite{Wang2019LearningDT,Dou2019DynamicLA,Wei2020MultiscaleCD}
\end{itemize}
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论