\parinterval 所谓Teacher-forcing,即要求模型预测的结果和标准答案完全对应。Teacher-forcing是一种深度学习训练策略,在序列处理任务上被广泛使用({\color{red} deep learning})。以序列生成任务为例,Teacher-forcing要求模型在训练时不是使用上一个时刻的模型输出作为下一个时刻的输入,而是使用训练数据中上一时刻的标准答案作为下一个时刻的输入。显然这会导致曝光偏置问题。为了解决这个问题,可以使用非Teacher-forcing方法,主要包括调度采样和生成对抗网络。
\parinterval 所谓Teacher-forcing,即要求模型预测的结果和标准答案完全对应。Teacher-forcing是一种深度学习训练策略,在序列处理任务上被广泛使用({\color{red} deep learning})。以序列生成任务为例,Teacher-forcing要求模型在训练时不是使用上一个时刻的模型输出作为下一个时刻的输入,而是使用训练数据中上一时刻的标准答案作为下一个时刻的输入。显然这会导致曝光偏置问题。为了解决这个问题,可以使用非Teacher-forcing方法。比如,在训练中使用束搜索,这样可以让训练过程模拟推断时的行为。具体来说,非Teacher-forcing方法可以用调度采样和生成对抗网络进行实现。