Commit 54d49416 by 曹润柘

合并分支 'caorunzhe' 到 'master'

更新 chapter17.tex

查看合并请求 !1117
parents 20cbab1e 214b5e5b
......@@ -122,7 +122,7 @@
\vspace{-1em}
\parinterval 语音识别目前广泛使用基于Transformer的模型结构(见{\chaptertwelve}),如图\ref{fig:17-5}所示。可以看出,相比文本翻译,语音识别模型结构上唯一的区别在于编码器的输入为声学特征,以及编码器底层会使用额外的卷积层来减小输入序列的长度。这是由于语音对应的特征序列过长,在计算注意力模型的时候,会占用大量的内存和显存,并增加训练时间。因此,一个常用的做法是在语音特征上进行两层步长为2的卷积操作,从而将输入序列的长度缩小为之前的1/4。通过使用大量的语音-标注平行数据对模型进行训练,可以得到高质量的语音识别模型。
\parinterval 为了降低语音识别的错误对下游系统的影响,通常也会用词格来取代One-best语音识别结果。除此之外,另一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。也可以进一步对文本做{\small\bfnew{顺滑}}\index{顺滑}(Disfluency Detection\index{Disfluency Detection})处理,使得送给翻译系统的文本更加干净、流畅,比如除去一些导致停顿的语气词。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。第三种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18}
\parinterval 为了降低语音识别的错误对下游系统的影响,通常也会用词格来取代One-best语音识别结果。除此之外,另一种思路是通过一个后处理模型修正识别结果中的错误,再送给文本翻译模型进行翻译。也可以进一步对文本做{\small\bfnew{顺滑}}\index{顺滑}(Disfluency Detection\index{Disfluency Detection})处理,使得送给翻译系统的文本更加干净、流畅,比如除去一些表示停顿的语气词。这一做法在工业界得到了广泛应用,但由于每个模型只能串行地计算,也会带来额外的计算代价以及运算时间。第三种思路是训练更加健壮的文本翻译模型,使其可以处理输入中存在的噪声或误差\upcite{DBLP:conf/acl/LiuTMCZ18}
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论