\node(encoder)[coder, above of = x,yshift=4em]{{编码器}};
\node(decoder_left)[coder, above of = encoder, yshift=6em,fill=blue!25]{{解码器}};
\node(encoder)[coder, above of = x,yshift=4em]{\large{编码器}};
\node(decoder_left)[coder, above of = encoder, yshift=6em,fill=blue!20]{\large{解码器}};
\node(y_hat)[above of = decoder_left, yshift=4em]{{$y$}};
\node(y)[above of = decoder_left, xshift=-6em]{{$y_{<}$}};
\node(decoder_right)[coder, above of = encoder, xshift=11em,fill=yellow!25]{{解码器}};
\node(decoder_right)[coder, above of = encoder, xshift=11em,fill=yellow!20]{\large{解码器}};
\node(figure)[draw=white,above of = decoder_right,yshift=6.5em,scale=0.25] {\includegraphics[width=0.62\textwidth]{./Chapter17/Figures/figure-bank-without-attention.jpg}};
\node [anchor=south,scale=1.2] (node1) at ([xshift=-2.5em,yshift=4.5em]y.north) {\small{$x$:源语言文本数据}};
\node [anchor=north,scale=1.2] (node2) at ([xshift=0.57em]node1.south){\small{$y$:目标语言文本数据}};
\node [anchor=south,scale=1.2] (node1) at ([xshift=-2.5em,yshift=4.5em]y.north) {{$x$:源语言文本数据}};
\node [anchor=north,scale=1.2] (node2) at ([xshift=0.57em]node1.south){{$y$:目标语言文本数据}};
\node[draw=white,scale=0.6] (input) at (0,0){\includegraphics[width=0.62\textwidth]{./Chapter17/Figures/figure-bank-without-attention.jpg}};(1.9,-1.4);
\node[anchor=west] (label1) at ([xshift=-3.5em]input.west) {\begin{tabular}{l}{\normalsize{图片:}}\end{tabular}};
\node[anchor=south] (label2) at ([yshift=-6em]label1.south) {\begin{tabular}{l}{\normalsize{源文:}}\end{tabular}};
\node[anchor=south] (english1) at ([xshift=-0.35em,yshift=-2.3em]input.south) {\begin{tabular}{l}{\large{A\; girl\; jumps\; off\; a\;{\red{\underline{bank}}}\quad .}}\end{tabular}};
\node[anchor=south] (label2) at ([yshift=-6em]label1.south) {\begin{tabular}{l}{\normalsize{源语言:}}\end{tabular}};
\node[anchor=south] (english1) at ([xshift=-0.28em,yshift=-2.3em]input.south) {\begin{tabular}{l}{\large{A\; girl\; jumps\; off\; a\;{\red{\underline{bank}}}\quad .}}\end{tabular}};
\draw[->,very thick]([xshift=-1.4em]trans.west) to (trans.west);
\draw[->,very thick](trans.east) to ([xshift=1.4em]trans.east);
\node[anchor=east] (de1) at ([xshift=4.5cm,yshift=-0.1em]trans.east) {\begin{tabular}{l}{\normalsize{译文:}}{\normalsize{一个/女孩/从/{\red{河床}}/}}\end{tabular}};
\node[anchor=south] (de2) at ([xshift=-0em,yshift=-1.5em]de1.south) {\begin{tabular}{l}{\normalsize{上/跳下来/。}}\end{tabular}};
\draw[->,thick]([xshift=-1.4em]trans.west) to (trans.west);
\node[anchor=east] (de1) at ([xshift=5.2cm,yshift=-0.1em]trans.east) {\begin{tabular}{l}{\normalsize{目标语言:}}{\normalsize{一个/女孩/从/{\red{河床}}/}}\end{tabular}};
\node[anchor=south] (de2) at ([xshift=1.1em,yshift=-1.5em]de1.south) {\begin{tabular}{l}{\normalsize{上/跳下来/。}}\end{tabular}};
\draw[->,thick](trans.east) to ([xshift=0.5em,yshift=0.1em]de1.west);
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,结果的损失则越小。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 为了保证对相关内容描述的完整性,这里对语音处理的基本知识作简要介绍。不同于文本,音频本质上是经过若干信号处理之后的{\small\bfnew{波形}}(Waveform)\index{Waveform}。具体来说,声音是一种空气的震动,因此可以被转换为模拟信号。模拟信号是一段连续的信号,经过采样变为离散的数字信号。采样是每隔固定的时间记录一下声音的振幅,采样率表示每秒的采样点数,单位是赫兹(Hz)。采样率越高,采样的结果与原始的语音越相像。通常来说,采样的标准是能够通过离散化的数字信号重现原始语音。日常生活中使用的手机和电脑设备的采样率一般为16kHz,表示每秒16000个采样点;而音频CD的采样率可以达到44.1kHz。 经过进一步的量化,将采样点的值转换为整型数值保存,从而减少占用的存储空间,通常采用的是16位量化。将采样率和量化位数相乘,就可以得到{\small\bfnew{比特率}}\index{比特率}(Bits Per Second,BPS)\index{Bits Per Second},表示音频每秒占用的位数。例如,16kHz采样率和16位量化的音频,比特率为256kb/s。音频处理的整体流程如图\ref{fig:17-2}所示\upcite{洪青阳2020语音识别原理与应用,陈果果2020语音识别实战}。
\parinterval 图\ref{fig:18-2}给出了一个使用TranSmart系统\footnote{\url{https://transmart.qq.com/index}}进行交互式机器翻译的例子,在这里要将一个汉语句子“疼痛/也/可能/会在/夜间/使/你/醒来。”翻译成英语“Pain may also wake you up during the night .”。在开始交互之前,系统首先推荐一个可能的译文“Pain may also wake you up at night .”。在第一次交互中,用户将单词at替换成during,然后系统根据用户修改后的译文立即给出新的译文候选,提供给用户选择。循环往复,直到用户接受了系统当前推荐的译文。
\parinterval 图\ref{fig:18-2}给出了一个使用TranSmart系统进行交互式机器翻译的例子,在这里要将一个汉语句子“疼痛/也/可能/会在/夜间/使/你/醒来。”翻译成英语“Pain may also wake you up during the night .”。在开始交互之前,系统首先推荐一个可能的译文“Pain may also wake you up at night .”。在第一次交互中,用户将单词at替换成during,然后系统根据用户修改后的译文立即给出新的译文候选,提供给用户选择。循环往复,直到用户接受了系统当前推荐的译文。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。
\parinterval 在得到${\bm\pi}^K=\frac{\partial L}{\partial{\mathbi{s}}^K}$之后,下一步的目标是:1)计算损失函数$ L $相对于第$ K-1$层与输出层之间连接权重${\mathbi{W}}^K $的梯度;2)计算损失函数$ L $相对于神经网络第$ K-1$层输出结果${\mathbi{h}}^{K-1}$的梯度。这部分内容如图\ref{fig:9-55}所示。
\item OpenSeq2Seq。由NVIDIA团队开发的\upcite{DBLP:journals/corr/abs-1805-10387}基于TensorFlow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。网址:\url{https://nvidia.github.io/OpenSeq2Seq/html/index.html}
\item OpenSeq2Seq。由NVIDIA团队开发的\upcite{DBLP:journals/corr/abs-1805-10387}基于TensorFlow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个涉及机器翻译多种任务的综合性会议,包括多领域翻译评测任务、质量评价任务以及其他与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测会议,很多研究工作都以WMT评测结果作为基准。WMT评测涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他语言之间的翻译性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT的机器翻译评测相关信息可参考SIGMT官网:\url{http://www.sigmt.org/}。
\item WMT。WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个涉及机器翻译多种任务的综合性会议,包括多领域翻译评测任务、质量评价任务以及其他与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测会议,很多研究工作都以WMT评测结果作为基准。WMT评测涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他语言之间的翻译性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT的机器翻译评测相关信息可参考SIGMT官网。
\parinterval 以上评测数据大多可以从评测网站上下载,此外部分数据也可以从LDC(Lingu-istic Data Consortium)上申请,网址为\url{https://www.ldc.upenn.edu/}。ELRA(Euro-pean Language Resources Association)上也有一些免费的语料库供研究使用,其官网为\url{http://www.elra.info/}。从机器翻译发展的角度看,这些评测任务给相关研究提供了基准数据集,使得不同的系统都可以在同一个环境下进行比较和分析,进而建立了机器翻译研究所需的实验基础。此外,公开评测也使得研究人员可以第一时间了解机器翻译研究的最新成果,比如,有多篇ACL会议最佳论文的灵感就来自当年参加机器翻译评测任务的系统。
\parinterval 以上评测数据大多可以从评测网站上下载,此外部分数据也可以从LDC(Lingu-istic Data Consortium)上申请。ELRA(European Language Resources Association)上也有一些免费的语料库供研究使用。从机器翻译发展的角度看,这些评测任务给相关研究提供了基准数据集,使得不同的系统都可以在同一个环境下进行比较和分析,进而建立了机器翻译研究所需的实验基础。此外,公开评测也使得研究人员可以第一时间了解机器翻译研究的最新成果,比如,有多篇ACL会议最佳论文的灵感就来自当年参加机器翻译评测任务的系统。
\item United Nations Parallel Corpus:包括阿拉伯语、英语、西班牙语、法语、俄语、汉语6种联合国正式语言,30种语言对的双语数据,来源自联合国公共领域的官方记录和其他会议文件。URL:\url{https://conferences.unite.un.org/UNCorpus/}
\item United Nations Parallel Corpus:包括阿拉伯语、英语、西班牙语、法语、俄语、汉语6种联合国正式语言,30种语言对的双语数据,来源自联合国公共领域的官方记录和其他会议文件。
\parinterval机器翻译可以与文档解析、语音识别、{\small\bfnew{光学字符识别}}\index{光学字符识别}(Optical Character Recognition,OCR)\index{Optical Character Recognition} 和视频字幕提取等技术相结合,丰富机器翻译的应用模式。其中文档解析技术可以帮助实现Word文档翻译、PDF文档翻译、WPS 文档翻译、邮件翻译等更多格式文档自动翻译的目标,也可以作为插件嵌入到各种办公平台中,成为智能办公好助手。语音识别与机器翻译是绝配,语音翻译用途广泛,比如翻译机、语音翻译APP和会议AI同传应用。但目前最大的问题主要体现在两个方面,一是很多实际应用场景中语音识别效果欠佳,造成错误蔓延,导致机器翻译结果不够理想;二是就算小语种的语音识别效果很好,但资源稀缺型小语种翻译性能不够好。OCR技术可以帮助实现扫描笔和翻译笔的应用、出国旅游的拍照翻译功能,将来还可以与穿戴式设备相结合,比如智能眼镜等等。视频字幕翻译能够帮助我们欣赏没有中文字幕的国外电影和电视节目,比如到达任何一个国家,打开电视都能够看到中文字幕,也是非常酷的应用。