Commit 710f6d37 by 孟霞

合并分支 'mengxia' 到 'caorunzhe'

参考文献chapter9

查看合并请求 !227
parents 3a8256a0 8c41b8c3
......@@ -2307,7 +2307,7 @@ Jobs was the CEO of {\red{\underline{apple}}}.
\begin{itemize}
\vspace{0.5em}
\item 端到端学习是神经网络方法的特点之一。这样,系统开发者不需要设计输入和输出的隐含结构,甚至连特征工程都不再需要。但是,另一方面,由于这种端到端学习完全由神经网络自行完成,整个学习过程没有人的先验知识做指导,导致学习的结构和参数很难进行解释。针对这个问题也有很多研究者进行{\small\sffamily\bfseries{可解释机器学习}}\index{可解释机器学习}(Explainable Machine Learning)\index{Explainable Machine Learning}的研究\cite{guidotti2018survey}\cite{koh2017understanding}。对于自然语言处理,方法的可解释性是十分必要的。从另一个角度说,如何使用先验知识改善端到端学习也是很多人关注的方向\cite{arthur2016incorporating}\cite{Zhang2017PriorKI},比如,如何使用句法知识改善自然语言处理模型\cite{zollmann2006syntax}\cite{charniak2003syntax}\cite{stahlberg2016syntactically}
\item 端到端学习是神经网络方法的特点之一。这样,系统开发者不需要设计输入和输出的隐含结构,甚至连特征工程都不再需要。但是,另一方面,由于这种端到端学习完全由神经网络自行完成,整个学习过程没有人的先验知识做指导,导致学习的结构和参数很难进行解释。针对这个问题也有很多研究者进行{\small\sffamily\bfseries{可解释机器学习}}\index{可解释机器学习}(Explainable Machine Learning)\index{Explainable Machine Learning}的研究\cite{guidotti2018survey}\cite{koh2017understanding}。对于自然语言处理,方法的可解释性是十分必要的。从另一个角度说,如何使用先验知识改善端到端学习也是很多人关注的方向\cite{arthur2016incorporating}\cite{zhang-etal-2017-prior},比如,如何使用句法知识改善自然语言处理模型\cite{DBLP:conf/wmt/ZollmannV06}\cite{charniak2003syntax}\cite{stahlberg2016syntactically}
\vspace{0.5em}
\item {\color{red} 神经语言模型的一些典型工作,可以参考survey:https://arxiv.org/pdf/1906.03591.pdf}
\vspace{0.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论