Commit 719d4425 by zengxin

合并分支 'caorunzhe' 到 'zengxin'

Caorunzhe

查看合并请求 !1102
parents 6a08422a 1fcf6c9b
......@@ -912,7 +912,7 @@ x_1\cdot w_1+x_2\cdot w_2+x_3\cdot w_3 & = & 0\cdot 1+0\cdot 1+1\cdot 1 \nonumbe
\parinterval 简单来说,张量是一种通用的工具,用于描述由多个数据构成的量。比如,输入的量有三个维度在变化,用矩阵不容易描述,但是用张量却很容易。
\parinterval 从计算机实现的角度来看,现在所有深度学习框架都把张量定义为“多维数组”。张量有一个非常重要的属性\ \dash \ {\small\bfnew{}}\index{}(Rank)\index{Rank}。可以将多维数组中“维”的属性与张量的“阶”的属性作类比,这两个属性都表示多维数组(张量)有多少个独立的方向。例如,3是一个标量,相当于一个0维数组或0阶张量;$ {(\begin{array}{cccc} 2 & -3 & 0.8 & 0.2\end{array})}^{\textrm T} $ 是一个向量,相当于一个1维数组或1阶张量;$ \begin{pmatrix} -1 & 3 & 7\\ 0.2 & 2 & 9\end{pmatrix} $是一个矩阵,相当于一个2维数组或2阶张量;如图\ref{fig:9-25}所示,这是一个4维数组或4阶张量,其中,每个$3 \times 3$的方形代表一个2阶张量,这样的方形有4个,最终形成4阶张量。
\parinterval 从计算机实现的角度来看,现在所有深度学习框架都把张量定义为“多维数组”。张量有一个非常重要的属性\ \dash \ {\small\bfnew{}}\index{}(Rank)\index{Rank}。可以将多维数组中“维”的属性与张量的“阶”的属性作类比,这两个属性都表示多维数组(张量)有多少个独立的方向。例如,3是一个标量,相当于一个0维数组或0阶张量;$ {(\begin{array}{cccc} 2 & -3 & 0.8 & 0.2\end{array})}^{\textrm T} $ 是一个向量,相当于一个1维数组或1阶张量;$ \begin{pmatrix} -1 & 3 & 7\\ 0.2 & 2 & 9\end{pmatrix} $是一个矩阵,相当于一个2维数组或2阶张量;如图\ref{fig:9-25}所示,这是一个3维数组或3阶张量,其中,每个$3 \times 3$的方形代表一个2阶张量,这样的方形有4个,最终形成3阶张量。
%----------------------------------------------
\begin{figure}[htp]
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论