Commit 98bb708d by 曹润柘

合并分支 'mengxia' 到 'caorunzhe'

Mengxia

查看合并请求 !767
parents e9f085f5 6304d12e
......@@ -532,9 +532,9 @@ His house is on the south bank of the river.
\hline
\rule{0pt}{10pt} One-hot词向量 & RAE编码\upcite{DBLP:conf/emnlp/SocherPHNM11} \\
\rule{0pt}{10pt} Word2Vec词向量\upcite{DBLP:journals/corr/abs-1301-3781} & Doc2Vec向量\upcite{DBLP:conf/icml/LeM14} \\
\rule{0pt}{10pt} Prob-fasttext词向量\upcite{DBLP:conf/acl/AthiwaratkunW17} & ELMO预训练句子表示\upcite{DBLP:conf/naacl/PetersNIGCLZ18} \\
\rule{0pt}{10pt} Prob-fasttext词向量\upcite{DBLP:conf/acl/AthiwaratkunW17} & ELMO预训练句子表示\upcite{Peters2018DeepCW} \\
\rule{0pt}{10pt} GloVe词向量\upcite{DBLP:conf/emnlp/PenningtonSM14} & GPT句子表示\upcite{radford2018improving} \\
\rule{0pt}{10pt} ELMO预训练词向量\upcite{DBLP:conf/naacl/PetersNIGCLZ18} & BERT预训练句子表示\upcite{devlin2019bert} \\
\rule{0pt}{10pt} ELMO预训练词向量\upcite{Peters2018DeepCW} & BERT预训练句子表示\upcite{devlin2019bert} \\
\rule{0pt}{10pt} BERT预训练词向量\upcite{devlin2019bert} & Skip-thought向量\upcite{DBLP:conf/nips/KirosZSZUTF15} \\
\end{tabular}
\label{tab:4-2}
......@@ -874,7 +874,7 @@ d&=&t \frac{s}{\sqrt{n}}
\vspace{0.5em}
\end{itemize}
\parinterval 随着深度学习技术的发展,另一种思路是使用表示学习技术生成句子的分布式表示,并在此基础上利用神经网络自动提取高度抽象的句子特征\upcite{DBLP:conf/wmt/KreutzerSR15,DBLP:conf/wmt/MartinsAHK16,DBLP:conf/wmt/ChenTZXZLW17},这样就避免了人工设计特征所带来的时间以及人工代价,同时表示学习所得到的分布式表示可以涵盖更多人工设计难以捕获到的特征,更加全面地反映句子的特点,因此在质量评估任务上也取得了很好的效果\upcite{kreutzer2015quality,DBLP:conf/wmt/ShahLPBBBS15,DBLP:conf/wmt/ScartonBSSS16,DBLP:conf/wmt/AbdelsalamBE16,DBLP:conf/wmt/BasuPN18,DBLP:conf/wmt/Lo19,DBLP:conf/wmt/YankovskayaTF19}。比如,最近的一些工作中大量使用了神经机器翻译模型来获得双语句子的表示结果,并用于质量评估\upcite{DBLP:conf/wmt/Qi19,DBLP:conf/wmt/ZhouZH19,DBLP:conf/wmt/Hokamp17,wang2019niutrans}。这样做的好处在于,质量评估可以直接复用机器翻译的模型,从某种意义上降低了质量评估系统开发的代价。此外,随着近几年各种预训练模型的出现,使用预训练模型来获取用于质量评估的句子表示也成为一大流行趋势,这种方法大大减少了质量评估模型自身的训练时间,在该领域内的表现也十分亮眼\upcite{kepler2019unbabel,DBLP:conf/wmt/YankovskayaTF19,DBLP:conf/wmt/KimLKN19}。关于表示学习、神经机器翻译、预训练模型的内容在第九章和第十章会有进一步介绍。
\parinterval 随着深度学习技术的发展,另一种思路是使用表示学习技术生成句子的分布式表示,并在此基础上利用神经网络自动提取高度抽象的句子特征\upcite{DBLP:conf/wmt/KreutzerSR15,DBLP:conf/wmt/MartinsAHK16,DBLP:conf/wmt/ChenTZXZLW17},这样就避免了人工设计特征所带来的时间以及人工代价,同时表示学习所得到的分布式表示可以涵盖更多人工设计难以捕获到的特征,更加全面地反映句子的特点,因此在质量评估任务上也取得了很好的效果\upcite{kreutzer2015quality,DBLP:conf/wmt/ShahLPBBBS15,DBLP:conf/wmt/ScartonBSSS16,DBLP:conf/wmt/AbdelsalamBE16,DBLP:conf/wmt/BasuPN18}。比如,最近的一些工作中大量使用了神经机器翻译模型来获得双语句子的表示结果,并用于质量评估\upcite{DBLP:conf/wmt/Qi19,DBLP:conf/wmt/ZhouZH19,DBLP:conf/wmt/Hokamp17,wang2019niutrans}。这样做的好处在于,质量评估可以直接复用机器翻译的模型,从某种意义上降低了质量评估系统开发的代价。此外,随着近几年各种预训练模型的出现,使用预训练模型来获取用于质量评估的句子表示也成为一大流行趋势,这种方法大大减少了质量评估模型自身的训练时间,在该领域内的表现也十分亮眼\upcite{kepler2019unbabel,DBLP:conf/wmt/YankovskayaTF19,DBLP:conf/wmt/KimLKN19}。关于表示学习、神经机器翻译、预训练模型的内容在第九章和第十章会有进一步介绍。
\parinterval 在得到句子表示之后,可以使用质量评估模块对译文质量进行预测。质量评估模型通常由回归算法或分类算法实现:
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论