\parinterval 图\ref{fig:3.3-5}展示了一个具体的例子,有一个可见状态序列$T F F T$,假设初始隐含状态是$A$,图中线上的概率值是对应的转移概率与发射概率的乘积,比如图中隐含状态$A$开始,下一个隐含状态是$A$且可见状态是$F$的概率是0.45,下一个隐含状态是$B$且可见状态是$F$的概率是0.55。图中可以看出,由于有较大的值,当可见状态序列为$T F F T$时,隐马尔可夫计算出的最有可能的隐含状态序列为$A A A A$。但是如果对训练集进行统计可能会发现,当可见序列为$T F F T$ 时,对应的隐含状态是$A A A A$的概率可能是比较大的,但也可能是比较小的。这个例子中出现预测偏差的主要原因是:由于比其他状态转移概率要大得多,隐含状态的预测一直停留在状态$A$。