Commit a0890aa2 by 曹润柘

5 6排版

parent 46922787
...@@ -229,7 +229,6 @@ ...@@ -229,7 +229,6 @@
%---------------------------------------------- %----------------------------------------------
\begin{itemize} \begin{itemize}
\vspace{0.5em}
\item 第一部分:对每个$i\in[1,l]$的目标语单词的产出率建模({\color{red!70} 红色}),即$\varphi_i$的生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^{i-1}$\footnote{这里约定,当$i=1$ 时,$\varphi_1^0$ 表示空。} \item 第一部分:对每个$i\in[1,l]$的目标语单词的产出率建模({\color{red!70} 红色}),即$\varphi_i$的生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^{i-1}$\footnote{这里约定,当$i=1$ 时,$\varphi_1^0$ 表示空。}
\vspace{0.5em} \vspace{0.5em}
\item 第二部分:对$i=0$时的产出率建模({\color{blue!70} 蓝色}),即空标记$t_0$的产出率生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^l$ \item 第二部分:对$i=0$时的产出率建模({\color{blue!70} 蓝色}),即空标记$t_0$的产出率生成概率。它依赖于$\seq{t}$和区间$[1,i-1]$的目标语单词的产出率$\varphi_1^l$
...@@ -248,7 +247,7 @@ ...@@ -248,7 +247,7 @@
\subsection{IBM 模型3} \subsection{IBM 模型3}
\parinterval IBM模型3通过一些假设对图\ref{fig:6-7}所表示的基本模型进行了化简。具体来说,对于每个$i\in[1,l]$,假设$\funp{P}(\varphi_i |\varphi_1^{i-1},\seq{t})$仅依赖于$\varphi_i$$t_i$$\funp{P}(\pi_{ik}|\pi_{i1}^{k-1},\pi_1^{i-1},\tau_0^l,\varphi_0^l,\seq{t})$仅依赖于$\pi_{ik}$$i$$m$$l$。而对于所有的$i\in[0,l]$,假设$\funp{P}(\tau_{ik}|\tau_{i1}^{k-1},\tau_1^{i-1},\varphi_0^l,\seq{t})$仅依赖于$\tau_{ik}$$t_i$。这些假设的形式化描述为: \parinterval IBM模型3通过一些假设对图\ref{fig:6-7}所表示的基本模型进行了化简。具体来说,对于每个$i\in[1,l]$,假设$\funp{P}(\varphi_i |\varphi_1^{i-1},\seq{t})$仅依赖于$\varphi_i$$t_i$$\funp{P}(\pi_{ik}|\pi_{i1}^{k-1},\pi_1^{i-1},\tau_0^l,\varphi_0^l,\seq{t})$仅依赖于$\pi_{ik}$$i$$m$$l$。而对于所有的$i\in[0,l]$,假设$\funp{P}(\tau_{ik}|\tau_{i1}^{k-1},\tau_1^{i-1},\varphi_0^l,\seq{t})$仅依赖于$\tau_{ik}$$t_i$。这些假设的形式化描述为:
\vspace{-0.5em}
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t}) & = &{\funp{P}(\varphi_i|t_i)} \label{eq:6-10} \\ \funp{P}(\varphi_i|\varphi_1^{i-1},\seq{t}) & = &{\funp{P}(\varphi_i|t_i)} \label{eq:6-10} \\
\funp{P}(\tau_{ik} = s_j |\tau_{i1}^{k-1},\tau_{1}^{i-1},\varphi_0^t,\seq{t}) & = & t(s_j|t_i) \label{eq:6-11} \\ \funp{P}(\tau_{ik} = s_j |\tau_{i1}^{k-1},\tau_{1}^{i-1},\varphi_0^t,\seq{t}) & = & t(s_j|t_i) \label{eq:6-11} \\
...@@ -265,7 +264,6 @@ ...@@ -265,7 +264,6 @@
\end{eqnarray} \end{eqnarray}
否则 否则
\begin{eqnarray} \begin{eqnarray}
\funp{P}(\pi_{0k}=j|\pi_{01}^{k-1},\pi_1^l,\tau_0^l,\varphi_0^l,\seq{t}) & = & 0 \funp{P}(\pi_{0k}=j|\pi_{01}^{k-1},\pi_1^l,\tau_0^l,\varphi_0^l,\seq{t}) & = & 0
\label{eq:6-14} \label{eq:6-14}
...@@ -308,7 +306,6 @@ m-\varphi_0\\ ...@@ -308,7 +306,6 @@ m-\varphi_0\\
p_0+p_1 & = & 1 \label{eq:6-21} p_0+p_1 & = & 1 \label{eq:6-21}
\end{eqnarray} \end{eqnarray}
} }
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
% NEW SUB-SECTION % NEW SUB-SECTION
%---------------------------------------------------------------------------------------- %----------------------------------------------------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论