Commit abf7dbfd by 单韦乔

no message

parent 730fc76f
......@@ -980,7 +980,7 @@ w^{'} = \argmax_{w \in \chi}P(w)
\begin{adjustwidth}{1em}{}
\begin{itemize}
\vspace{0.5em}
\item{\small\sffamily\bfseries{建模}}方面,本章介绍的语言建模采用的是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被“一步一步”生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,句子出现的概率是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对于{\small\sffamily\bfseries{生成模型}}\index{生成模型}(Generative Model)\index{Generative Model},另一类方法是{\small\sffamily\bfseries{判别模型}}\index{判别模型}(Discriminative Model)\index{Discriminative Model},它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活地引入不同的特征\upcite{DBLP:conf/acl/OchN02}。判别模型在自然语言处理中也有广泛应用\upcite{shannon1948mathematical}\upcite{ng2002discriminative}。 在本书的第四章也会使用到判别式模型。
\item{\small\sffamily\bfseries{建模}}方面,本章介绍的语言建模采用的是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被“一步一步”生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,新句子出现的可能性是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对于{\small\sffamily\bfseries{生成模型}}\index{生成模型}(Generative Model)\index{Generative Model},另一类方法是{\small\sffamily\bfseries{判别模型}}\index{判别模型}(Discriminative Model)\index{Discriminative Model},它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活地引入不同的特征\upcite{DBLP:conf/acl/OchN02}。判别模型在自然语言处理中也有广泛应用\upcite{shannon1948mathematical}\upcite{ng2002discriminative}。 在本书的第四章也会使用到判别式模型。
\vspace{0.5em}
\item 从现在{\small\sffamily\bfseries{自然语言处理的前沿}}看,基于端到端学习的深度学习方法在很多任务中都取得了领先的性能。语言模型同样可以使用这些方法,而且在近些年取得了巨大成功\upcite{DBLP:conf/nips/BengioDV00}。关于神经语言模型的内容,会在{\chapternine}进行进一步介绍。这里更多地关注了语言模型的基本问题和求解思路,因为对问题的建模是自然语言处理的基础,对问题的本质刻画并不会因为方法的改变而改变。在后续章节还将看到,这里所使用的生成序列的建模方法会作为机器翻译最基本的范式。
\vspace{0.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论