\parinterval 虽然预训练词嵌入在海量的单语数据上学习到了丰富的表示,但词嵌入很主要的一个缺点是无法解决一词多义问题。在不同的上下文中,同一个单词经常表示不同的意思,但词嵌入是完全相同的。模型需要在编码过程中通过上下文去理解每个词在当前语境下的含义,从而增加了建模的复杂度。因此,上下文词向量在近些年得到了广泛的关注\upcite{DBLP:conf/acl/PetersABP17,mccann2017learned,DBLP:conf/naacl/PetersNIGCLZ18}。上下文词嵌入是指一个词的表示不仅依赖于单词自身,还要根据所在的上下文语境来得到。由于在不同的上下文中,每个词对应的词嵌入是不同的,因此无法简单地通过词嵌入矩阵来表示,通常的做法是使用海量的单语数据预训练语言模型任务,使模型具备丰富的特征提取能力\upcite{DBLP:conf/naacl/PetersNIGCLZ18,radford2018improving,devlin2019bert}。比如,ELMo(Embeddings from Language Models)通过BiLSTM模型预训练语言模型任务,通过线性融合不同层的表示来得到每个词的上下文词嵌入,在很多自然语言处理任务上均得到了最佳的性能\upcite{DBLP:conf/naacl/PetersNIGCLZ18}。({\color{red} 许:可以加个图,类似于ELMo里的})
=======
\parinterval 虽然预训练词嵌入在海量的单语数据上学习到了丰富的表示,但词嵌入很主要的一个缺点是无法解决一词多义问题。在不同的上下文中,同一个单词经常表示不同的意思,但词嵌入是完全相同的。模型需要在编码过程中通过上下文去理解每个词在当前语境下的含义,从而增加了建模的复杂度。因此,上下文词向量在近些年得到了广泛的关注\upcite{DBLP:conf/acl/PetersABP17,mccann2017learned,DBLP:conf/naacl/PetersNIGCLZ18}。上下文词嵌入是指一个词的表示不仅依赖于单词自身,还要根据所在的上下文语境来得到。由于在不同的上下文中,每个词对应的词嵌入是不同的,因此无法简单地通过词嵌入矩阵来表示,通常的做法是使用海量的单语数据预训练语言模型任务,使模型具备丰富的特征提取能力\upcite{DBLP:conf/naacl/PetersNIGCLZ18,radford2018improving,devlin2019bert}。比如,{\small\bfnew{来自语言模型的嵌入}}(Embeddings from Language Models,ELMo)\index{ELMo}\index{来自语言模型的嵌入}通过BiLSTM模型预训练语言模型任务,通过线性融合不同层的表示来得到每个词的上下文词嵌入,在很多自然语言处理任务上均得到了最佳的性能\upcite{DBLP:conf/naacl/PetersNIGCLZ18}。({\color{red} 许:可以加个图,类似于ELMo里的})