Commit b26421ec by 曹润柘

合并分支 'master' 到 'caorunzhe'

Master

查看合并请求 !1129
parents df7c3547 7a7d60ac
......@@ -914,7 +914,7 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\vspace{0.5em}
\item 统计机器翻译的成功很大程度上来自判别模型引入任意特征的能力。因此,在统计机器翻译时代,很多工作都集中在新特征的设计上。比如,可以基于不同的统计特征和先验知识设计翻译特征\upcite{och2004smorgasbord,Chiang200911,gildea2003loosely},也可以模仿分类任务设计大规模的稀疏特征\upcite{DBLP:conf/emnlp/ChiangMR08}。模型训练和特征权重调优也是统计机器翻译中的重要问题,除了最小错误率训练,还有很多方法,比如,最大似然估计\upcite{koehn2003statistical,DBLP:journals/coling/BrownPPM94}、判别式方法\upcite{Blunsom2008A}、贝叶斯方法\upcite{Blunsom2009A,Cohn2009A}、最小风险训练\upcite{smith2006minimum,li2009first}、基于Margin的方法\upcite{watanabe2007online,Chiang200911}以及基于排序模型的方法(PRO)\upcite{Hopkins2011Tuning,dreyer2015apro}。实际上,统计机器翻译的训练和解码也存在不一致的问题,比如,特征值由双语数据上的极大似然估计得到(没有剪枝),而解码时却使用束剪枝,而且模型的目标是最大化机器翻译评价指标。对于这个问题也可以通过调整训练的目标函数进行缓解\upcite{XiaoA,marcu2006practical}
\vspace{0.5em}
\item 短语表是基于短语的系统中的重要模块。但是,简单地利用基于频次的方法估计得到的翻译概率无法很好地处理低频短语。这时就需要对短语表进行平滑\upcite{DBLP:conf/iwslt/ZensN08,DBLP:conf/emnlp/SchwenkCF07,boxing2011unpacking,DBLP:conf/coling/DuanSZ10}。另一方面,随着数据量的增长和抽取短语长度的增大,短语表的体积会急剧膨胀,这也大大增加了系统的存储消耗,同时过大的短语表也会带来短语查询效率的下降。针对这个问题,很多工作尝试对短语表进行压缩。一种思路是限制短语的长度\upcite{DBLP:conf/naacl/QuirkM06,DBLP:journals/coling/MarinoBCGLFC06};另一种广泛使用的思路是使用一些指标或者分类器来对短语进行剪枝,其核心思想是判断每个短语的质量\upcite{DBLP:conf/emnlp/ZensSX12},并过滤掉低质量的短语。代表性的方法有:基于假设检验的剪枝\upcite{DBLP:conf/emnlp/JohnsonMFK07}、基于熵的剪枝\upcite{DBLP:conf/emnlp/LingGTB12}、两阶段短语抽取方法\upcite{DBLP:conf/naacl/ZettlemoyerM07}、基于解码中短语使用频率的方法\upcite{DBLP:conf/naacl/EckVW07}等。此外,短语表的存储方式也是在实际使用中需要考虑的问题。因此,也有研究者尝试使用更加紧凑、高效的结构保存短语表。其中最具代表性的结构是后缀数组(Suffix Arrays),这种结构可以充分利用短语之间有重叠的性质,减少了重复存储\upcite{DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/naacl/ZensN07,2014Dynamic}
\item 短语表是基于短语的系统中的重要模块。但是,简单地利用基于频次的方法估计得到的翻译概率无法很好地处理低频短语。这时就需要对短语表进行平滑\upcite{DBLP:conf/iwslt/ZensN08,DBLP:conf/emnlp/SchwenkCF07,boxing2011unpacking,DBLP:conf/coling/DuanSZ10}。另一方面,随着数据量的增长和抽取短语长度的增大,短语表的体积会急剧膨胀,这也大大增加了系统的存储消耗,同时过大的短语表也会带来短语查询效率的下降。针对这个问题,很多工作尝试对短语表进行压缩。一种思路是限制短语的长度\upcite{DBLP:conf/naacl/QuirkM06,DBLP:journals/coling/MarinoBCGLFC06};另一种广泛使用的思路是使用一些指标或者分类器来对短语进行剪枝,其核心思想是判断每个短语的质量\upcite{DBLP:conf/emnlp/ZensSX12},并过滤掉低质量的短语。代表性的方法有:基于假设检验的剪枝\upcite{DBLP:conf/emnlp/JohnsonMFK07}、基于熵的剪枝\upcite{DBLP:conf/emnlp/LingGTB12}、两阶段短语抽取方法\upcite{DBLP:conf/naacl/ZettlemoyerM07}、基于解码中短语使用频率的方法\upcite{DBLP:conf/naacl/EckVW07}等。此外,短语表的存储方式也是在实际使用中需要考虑的问题。因此,也有研究者尝试使用更加紧凑、高效的结构保存短语表。其中最具代表性的结构是后缀数组(Suffix Arrays),这种结构可以充分利用短语之间有重叠的性质,减少了重复存储\upcite{DBLP:conf/acl/Callison-BurchBS05,DBLP:conf/naacl/McNamee-and-Mayfield06,DBLP:conf/naacl/ZensN07,2014Dynamic}
\vspace{0.5em}
\end{itemize}
......
......@@ -145,44 +145,7 @@ new
pages={75--102},
year={1993}
}
@inproceedings{Wu2016GooglesNM,
author = {Yonghui Wu and
Mike Schuster and
Zhifeng Chen and
Quoc V. Le and
Mohammad Norouzi and
Wolfgang Macherey and
Maxim Krikun and
Yuan Cao and
Qin Gao and
Klaus Macherey and
Jeff Klingner and
Apurva Shah and
Melvin Johnson and
Xiaobing Liu and
Lukasz Kaiser and
Stephan Gouws and
Yoshikiyo Kato and
Taku Kudo and
Hideto Kazawa and
Keith Stevens and
George Kurian and
Nishant Patil and
Wei Wang and
Cliff Young and
Jason Smith and
Jason Riesa and
Alex Rudnick and
Oriol Vinyals and
Greg Corrado and
Macduff Hughes and
Jeffrey Dean},
title = {Google's Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation},
publisher = {CoRR},
volume = {abs/1609.08144},
year = {2016}
}
@inproceedings{DBLP:journals/corr/LuongPM15,
author = {Thang Luong and
Hieu Pham and
......@@ -3015,7 +2978,7 @@ year = {2012}
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2005}
}
@inproceedings{DBLP:conf/acl/Callison-BurchBS05,
@inproceedings{DBLP:conf/naacl/McNamee-and-Mayfield06,
author = {Paul McNamee and James Mayfield},
title = {Translation of Multiword Expressions Using Parallel Suffix Arrays},
publisher = {Association for Machine Translation in the Americas},
......@@ -3351,16 +3314,7 @@ year = {2012}
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2006}
}
@inproceedings{DBLP:conf/emnlp/DeNeefeKWM07,
author = {Steve DeNeefe and
Kevin Knight and
Wei Wang and
Daniel Marcu},
title = {What Can Syntax-Based {MT} Learn from Phrase-Based MT?},
pages = {755--763},
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2007}
}
@inproceedings{DBLP:conf/wmt/LiuG08,
author = {Ding Liu and
Daniel Gildea},
......@@ -7781,20 +7735,7 @@ author = {Zhuang Liu and
volume = {abs/2006.10369},
year = {2020}
}
@inproceedings{DBLP:conf/aclnmt/HuLLLLWXZ20,
author = {Chi Hu and
Bei Li and
Yinqiao Li and
Ye Lin and
Yanyang Li and
Chenglong Wang and
Tong Xiao and
Jingbo Zhu},
title = {The NiuTrans System for WNGT 2020 Efficiency Task},
pages = {204--210},
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2020}
}
@inproceedings{DBLP:journals/corr/abs-2010-02416,
author = {Yi-Te Hsu and
Sarthak Garg and
......@@ -7926,7 +7867,7 @@ author = {Zhuang Liu and
Xiao, Tong and
Zhu, Jingbo},
title = {The NiuTrans Machine Translation Systems for WMT20},
month = {November},
month = {11},
year = {2020},
publisher = {Annual Meeting of the Association for Computational Linguistics},
pages = {336--343}
......@@ -9232,21 +9173,7 @@ author = {Zhuang Liu and
publisher = {{IEEE} Conference on Computer Vision and Pattern Recognition},
year = {2017}
}
@inproceedings{DBLP:conf/coling/XuHJFWHJXZ20,
author = {Chen Xu and
Bojie Hu and
Yufan Jiang and
Kai Feng and
Zeyang Wang and
Shen Huang and
Qi Ju and
Tong Xiao and
Jingbo Zhu},
title = {Dynamic Curriculum Learning for Low-Resource Neural Machine Translation},
pages = {3977--3989},
publisher = {International Conference on Computational Linguistics},
year = {2020}
}
@inproceedings{DBLP:conf/acml/WuXTZQLL18,
author = {Lijun Wu and
Yingce Xia and
......@@ -9341,15 +9268,7 @@ author = {Zhuang Liu and
publisher = {Conference on Empirical Methods in Natural Language Processing},
year = {2007}
}
@inproceedings{DBLP:conf/emnlp/ShiPK16,
author = {Xing Shi and
Inkit Padhi and
Kevin Knight},
title = {Does String-Based Neural {MT} Learn Source Syntax?},
pages = {1526--1534},
publisher = {Conference on Empirical Methods in Natural Language Processing},
year = {2016}
}
@inproceedings{tu2017neural,
title={Neural machine translation with reconstruction},
author={Tu, Zhaopeng and Liu, Yang and Shang, Lifeng and Liu, Xiaohua and Li, Hang},
......@@ -10768,12 +10687,6 @@ author = {Zhuang Liu and
publisher = {Asian Federation of Natural Language Processing},
year = {2017}
}
@inproceedings{2018When,
title={When and Why are Pre-trainedWord Embeddings Useful for Neural Machine Translation?},
author={ Qi, Ye and Sachan, Devendra Singh and Felix, Matthieu and Padmanabhan, Sarguna Janani and Neubig, Graham },
publisher = {Annual Conference of the North American Chapter of the Association for Computational Linguistics},
year={2018},
}
@inproceedings{DBLP:conf/acl/PetersABP17,
author = {Matthew Peters and
Waleed Ammar and
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论