Commit bd05a3a3 by 曹润柘

update

parent 4ad776ec
......@@ -7,12 +7,12 @@
\node [anchor=center,model,fill=blue!20] (decoder) at ([xshift=7.5em]ate.east) {\small{解码器}};
\node [anchor=north,word] (w1) at ([yshift=-1.5em,xshift=0em]decoder.south) {\small{$x_3$}};
\node [anchor=west,word] (w2) at ([xshift=0em]w1.east) {\small{$x_4$}};
\node [anchor=west,word] (w3) at ([xshift=0em]w2.east) {[M]};
\node [anchor=west,word] (w3) at ([xshift=0em]w2.east) {<M>};
\node [anchor=east,word] (w4) at ([xshift=0em]w1.west) {[M]};
\node [anchor=east,word] (w5) at ([xshift=0em]w4.west) {[M]};
\node [anchor=east,word] (w6) at ([xshift=0em]w5.west) {[M]};
\node [anchor=west,word] (w7) at ([xshift=0em]w3.east) {[M]};
\node [anchor=east,word] (w4) at ([xshift=0em]w1.west) {<M>};
\node [anchor=east,word] (w5) at ([xshift=0em]w4.west) {<M>};
\node [anchor=east,word] (w6) at ([xshift=0em]w5.west) {<M>};
\node [anchor=west,word] (w7) at ([xshift=0em]w3.east) {<M>};
\node [anchor=south,word] (w8) at ([yshift=1.5em,xshift=0em]decoder.north) {\small{$x_4$}};
\node [anchor=east,word] (w9) at (w8.west) {\small{$x_3$}};
......@@ -33,11 +33,11 @@
%encoder
\node [model] (encoder) at ([xshift=-7.5em]ate.west) {\small{编码器}};
\node [anchor=north,word] (we1) at ([yshift=-1.5em,xshift=0em]encoder.south) {[M]};
\node [anchor=west,word] (we2) at ([xshift=0em]we1.east) {[M]};
\node [anchor=north,word] (we1) at ([yshift=-1.5em,xshift=0em]encoder.south) {<M>};
\node [anchor=west,word] (we2) at ([xshift=0em]we1.east) {<M>};
\node [anchor=west,word] (we3) at ([xshift=0em]we2.east) {\small{$x_6$}};
\node [anchor=east,word] (we4) at ([xshift=0em]we1.west) {[M]};
\node [anchor=east,word] (we4) at ([xshift=0em]we1.west) {<M>};
\node [anchor=east,word] (we5) at ([xshift=0em]we4.west) {\small{$x_2$}};
\node [anchor=east,word] (we6) at ([xshift=0em]we5.west) {\small{$x_1$}};
\node [anchor=west,word] (we7) at ([xshift=0em]we3.east) {\small{$x_7$}};
......@@ -51,5 +51,5 @@
\draw [->,thick] (we7.north) -- ([yshift=1.35em]we7.north);
\draw [->,very thick] ([xshift=0.5em]encoder)--([xshift=-0.3em]decoder);
\node [anchor=south] (ex) at ([xshift=-4.0em,yshift=1.0em]encoder.north) {\small{[M]:Mask}};
\node [anchor=south] (ex) at ([xshift=-4.0em,yshift=1.0em]encoder.north) {\small{<M>:<Mask>}};
\end{tikzpicture}
\ No newline at end of file
......@@ -3,13 +3,13 @@
%-------------------------------------------------------------------------
\begin{tikzpicture}
\tikzstyle{lan}=[font=\footnotesize,inner ysep=2pt,minimum height=1em]
\node[minimum height=3em,minimum width=8em,fill=orange!20,draw,rounded corners=2pt,align=center,line width=0.6pt] (sys) at (0,0){多语言 \\ 单模型系统};
\node[draw,font=\footnotesize,minimum width=4em,fill=red!20,rounded corners=1pt,line width=0.6pt] (en) at (-3em,4em){英语};
\node[draw,font=\footnotesize,minimum width=4em,fill=red!20,rounded corners=1pt,line width=0.6pt] (fr) at (3em,4em){法语};
\node[minimum width=4em] at (6.6em,4em){$\dots$};
\node[draw,font=\footnotesize,minimum width=4em,fill=blue!20,rounded corners=1pt,line width=0.6pt] (de) at (-3em,-4em){德语};
\node[draw,font=\footnotesize,minimum width=4em,fill=blue!20,rounded corners=1pt,line width=0.6pt] (sp) at (3em,-4em){西班牙语};
\node[minimum width=4em] at (6.6em,-4em){$\dots$};
\node[minimum height=4em,minimum width=8em,fill=orange!20,draw,rounded corners=2pt,align=center,line width=0.6pt,font=\small] (sys) at (0,0){多语言 \\ 单模型系统};
\node[draw,font=\footnotesize,minimum width=4em,fill=red!20,rounded corners=1pt,line width=0.6pt] (en) at (-3em,5em){英语};
\node[draw,font=\footnotesize,minimum width=4em,fill=red!20,rounded corners=1pt,line width=0.6pt] (fr) at (3em,5em){法语};
\node[minimum width=4em] at (6.6em,5em){$\dots$};
\node[draw,font=\footnotesize,minimum width=4em,fill=blue!20,rounded corners=1pt,line width=0.6pt] (de) at (-3em,-5em){德语};
\node[draw,font=\footnotesize,minimum width=4em,fill=blue!20,rounded corners=1pt,line width=0.6pt] (sp) at (3em,-5em){西班牙语};
\node[minimum width=4em] at (6.6em,-5em){$\dots$};
\draw[->,thick] (en.-90) -- ([xshift=-1em]sys.90);
\draw[->,thick] (fr.-90) -- ([xshift=1em]sys.90);
......
......@@ -12,10 +12,10 @@
\node[node,anchor=west,minimum width=6em,minimum height=2.4em,fill=blue!20,line width=0.6pt] (decoder2) at ([xshift=4em,yshift=0em]decoder1.east){\small 解码器};
\node[node,anchor=west,minimum width=6em,minimum height=2.4em,fill=blue!30,line width=0.6pt] (decoder3) at ([xshift=3em]decoder2.east){\small 解码器};
\node[anchor=north,font=\scriptsize,fill=yellow!20] (w1) at ([yshift=-1.6em]decoder1.south){知识 \ 就是 \ 力量 \ \ <eos>};
\node[anchor=north,font=\scriptsize,fill=green!20] (w3) at ([yshift=-1.6em]decoder3.south){Wissen \ ist \ Machit \ . \ <eos>};
\node[anchor=south,font=\scriptsize,fill=orange!20] (w2) at ([yshift=1.6em]encoder1.north){Knowledge \ is \ power \ . };
\node[anchor=south,font=\scriptsize,fill=orange!20] (w4) at ([yshift=1.6em]encoder3.north){Knowledge \ is \ power \ . };
\node[anchor=north,font=\scriptsize,fill=yellow!20,drop shadow,draw] (w1) at ([yshift=-1.6em]decoder1.south){知识 \ 就是 \ 力量 \ \ <eos>};
\node[anchor=north,font=\scriptsize,fill=green!20,drop shadow,draw] (w3) at ([yshift=-1.6em]decoder3.south){El conocimiento es poder . <eos>};
\node[anchor=south,font=\scriptsize,fill=orange!20,drop shadow,draw] (w2) at ([yshift=1.6em]encoder1.north){Knowledge \ is \ power \ . };
\node[anchor=south,font=\scriptsize,fill=orange!20,drop shadow,draw] (w4) at ([yshift=1.6em]encoder3.north){Knowledge \ is \ power \ . };
\draw[->,thick] (decoder1.-90) -- (w1.north);
......
......@@ -62,7 +62,7 @@
\parinterval 围绕如何利用回译方法生成伪双语数据这一问题,研究人员进行了详细地分析探讨。一般观点认为,反向翻译模型的性能越好,生成的伪数据质量也就越高,对正向翻译模型的性能提升也就越大\upcite{Sennrich2016ImprovingNM,DBLP:conf/aclnmt/HoangKHC18}。不过,在实践中发现,即使一些简单的策略也能带来性能的增长。比如,对于一些低资源翻译任务,通过将目标语言句子复制到源语言端构造伪数据便能带来增益\upcite{DBLP:conf/wmt/CurreyBH17}。原因在于,即使构造的双语伪数据是不准确的,其目标语言端仍然是真实数据,可以使解码器训练得更加充分,进而提升神经机器翻译模型生成结果的流畅度。但是,相比这些简单的伪数据生成策略,利用目标语言单语数据进行回译可以带来更大的性能提升\upcite{DBLP:conf/wmt/CurreyBH17}。一种可能的解释是,双语伪数据的源语言是模型生成的翻译结果,保留了两种语言之间的互译信息,相比真实数据又存在一定的噪声。神经机器翻译模型在伪双语句对上进行训练,可以学习到如何处理带有噪声的输入,提高了模型的健壮性。
\parinterval 在回译方法中,反向翻译模型的训练只依赖于有限的双语数据,因此生成的源语言端伪数据的质量难以保证。为此,可以采用{\small\sffamily\bfnew{迭代式回译}}\index{迭代式回译}(Iterative Back Translation)\index{Iterative Back Translation}的方法\upcite{DBLP:conf/aclnmt/HoangKHC18},同时利用源语言端和目标语言端的单语数据,不断通过回译的方式来提升正向和反向翻译模型的性能。图\ref{fig:16-2}展示了迭代式回译的框架。首先,使用双语数据训练一个正向翻译模型,然后利用额外的源语言单语数据通过回译的方式生成伪双语数据,来提升反向翻译模型的性能。之后,再利用反向翻译模型和额外的目标语言单语数据生成伪双语数据,用于提升正向翻译模型的性能。可以看出,迭代式回译的过程是完全闭环的,因此可以一直重复进行,直到正向和反向翻译模型的性能均不再提升。
\parinterval 在回译方法中,反向翻译模型的训练只依赖于有限的双语数据,因此生成的源语言端伪数据的质量难以保证。为此,可以采用{\small\sffamily\bfnew{迭代式回译}}\index{迭代式回译}(Iterative Back Translation)\index{Iterative Back Translation}的方法\upcite{DBLP:conf/aclnmt/HoangKHC18},同时利用源语言端和目标语言端的单语数据,不断通过回译的方式来提升正向和反向翻译模型的性能。图\ref{fig:16-2}展示了迭代式回译的框架,图中带圈的数字代表了迭代式回译方法执行的顺序。首先,使用双语数据训练一个正向翻译模型,然后利用额外的源语言单语数据通过回译的方式生成伪双语数据,来提升反向翻译模型的性能。之后,再利用反向翻译模型和额外的目标语言单语数据生成伪双语数据,用于提升正向翻译模型的性能。可以看出,迭代式回译的过程是完全闭环的,因此可以一直重复进行,直到正向和反向翻译模型的性能均不再提升。
%----------------------------------------------
\begin{figure}[htp]
......@@ -90,7 +90,7 @@
\vspace{0.5em}
\item 丢掉单词:句子中的每个词均有$\funp{P}_{\rm{Drop}}$的概率被丢弃。
\vspace{0.5em}
\item 掩码单词:句子中的每个词均有$\funp{P}_{\rm{Mask}}$的概率被替换为一个额外的[Mask]词。[Mask]的作用类似于占位符,可以理解为一个句子中的部分词被屏蔽掉,无法得知该位置词的准确含义。
\item 掩码单词:句子中的每个词均有$\funp{P}_{\rm{Mask}}$的概率被替换为一个额外的<Mask>词。<Mask>的作用类似于占位符,可以理解为一个句子中的部分词被屏蔽掉,无法得知该位置词的准确含义。
\vspace{0.5em}
\item 打乱顺序:将句子中距离较近的某些词的位置进行随机交换。
\vspace{0.5em}
......@@ -194,7 +194,7 @@
%----------------------------------------------------------------------------------------
\subsubsection{3. 预训练模型}
\parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。一种可行的方案是在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型。基于这个想法,有大量的预训练模型被提出。比如,{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{GPT}{\small\bfnew{来自Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}就是两种典型的预训练模型。图\ref{fig:16-5}对比了二者的模型结构。
\parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。一种可行的方案是在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型。基于这个想法,有大量的预训练模型被提出。比如,{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{GPT}{\small\bfnew{基于Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}就是两种典型的预训练模型。图\ref{fig:16-5}对比了二者的模型结构。
%----------------------------------------------
\begin{figure}[htp]
......@@ -207,7 +207,7 @@
\parinterval GPT\upcite{radford2018improving}通过Transformer模型自回归地训练单向语言模型,类似于神经机器翻译模型的解码器,相比双向LSTM等模型,Tranformer模型的表示能力更强。在大规模单语数据上预训练得到的模型结构只需要进行简单的修改,再通过任务特定的训练数据进行微调,就可以很好地适配到下游任务中。之后提出的BERT模型更是将预训练的作用提升到了新的水平\upcite{devlin2019bert}。GPT模型的一个缺陷在于模型只能进行单向编码,也就是前面的文本在建模时无法获取到后面的信息。而BERT提出了一种自编码的方式,使模型在预训练阶段可以通过双向编码的方式进行建模,进一步增强了模型的表示能力。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词[Mask],这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章中也会使用到类似方法。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词<Mask>,这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章中也会使用到类似方法。
\parinterval 在神经机器翻译任务中,预训练模型可以用于初始化编码器的模型参数\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/naacl/EdunovBA19}。之所以用在编码器端而不是解码器端,主要原因是编码器的作用主要在于特征提取,训练难度相对较高,而解码器的作用主要在于生成,和编码器提取到的表示是强依赖的,相对比较脆弱\upcite{DBLP:journals/corr/abs-1908-06259}
......@@ -215,7 +215,7 @@
\parinterval 因此,一种做法将预训练模型和翻译模型进行融合,把预训练模型作为一个独立的模块来为编码器或者解码器提供句子级表示信息\upcite{DBLP:journals/corr/abs-2002-06823,DBLP:conf/aaai/YangW0Z00020}。另外一种做法是针对生成任务进行预训练。机器翻译是一种典型的语言生成任务,不仅包含源语言表示学习的问题,还有序列到序列的映射,以及目标语言端序列生成的问题,这些知识是无法单独通过(源语言)单语数据学习到的。因此,可以使用单语数据对编码器-解码器结构进行预训练\upcite{song2019mass,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/emnlp/QiYGLDCZ020}
\parinterval{\small\bfnew{掩码端到端预训练}}(Masked Sequence to Sequence Pre-training,MASS)\index{掩码端到端预训练}\index{MASS}方法为例\upcite{song2019mass},其思想与BERT十分相似,也是在预训练过程中采用掩码的方式,随机选择编码器输入句子中的连续片段替换为特殊词[Mask],然后在解码器预测这个连续片段,如图\ref{fig:16-6} 所示。这种做法可以使得编码器捕捉上下文信息,同时迫使解码器依赖于编码器进行自回归的生成,从而学习到编码器和解码器之间的注意力。为了适配下游的机器翻译任务,使预训练模型可以学习到不同语言的表示,MASS对不同语言的句子采用共享词汇表和模型参数的方法,利用同一个预训练模型来进行不同语言句子的预训练。通过这种方式,模型既学到了对源语言句子的编码,也学习到了对目标语言句子的生成方法,之后通过使用双语句对来对预训练模型的参数进行微调,模型可以快速收敛到较好的水平。
\parinterval{\small\bfnew{掩码端到端预训练}}(Masked Sequence to Sequence Pre-training,MASS)\index{掩码端到端预训练}\index{MASS}方法为例\upcite{song2019mass},其思想与BERT十分相似,也是在预训练过程中采用掩码的方式,随机选择编码器输入句子中的连续片段替换为特殊词<Mask>,然后在解码器预测这个连续片段,如图\ref{fig:16-6} 所示。这种做法可以使得编码器捕捉上下文信息,同时迫使解码器依赖于编码器进行自回归的生成,从而学习到编码器和解码器之间的注意力。为了适配下游的机器翻译任务,使预训练模型可以学习到不同语言的表示,MASS对不同语言的句子采用共享词汇表和模型参数的方法,利用同一个预训练模型来进行不同语言句子的预训练。通过这种方式,模型既学到了对源语言句子的编码,也学习到了对目标语言句子的生成方法,之后通过使用双语句对来对预训练模型的参数进行微调,模型可以快速收敛到较好的水平。
%----------------------------------------------
\begin{figure}[htp]
......@@ -335,7 +335,7 @@
\parinterval 有监督的对偶学习需要使用双语数据来训练两个翻译模型,但是有些低资源语言仅有少量双语数据可以训练。因此,如何使用资源相对丰富的单语数据来提升翻译模型的性能也是一个关键问题。
\parinterval 无监督对偶学习提供了一个解决问题的思路\upcite{qin2020dual}。假设目前有两个比较弱的翻译模型,一个原始翻译模型$f$将源语言句子$\seq{x}$翻译成目标语言句子$\seq{y}$,一个对偶任务模型$g$将目标语言句子$\seq{y}$翻译成源语言句子$\seq{x}$。翻译模型可由有限的双语训练或者使用无监督机器翻译的方法得到。如图\ref{fig:16-10}所示,无监督对偶学习的做法是,先通过原始任务模型$f$将一个源语言单语句子$x$翻译为目标语言句子$y$由于没有参考译文,无法判断$y$的正确性。但通过语言模型,可以判断这个句子是否通顺、符合语法规范,这些信息可用来评估翻译模型$f$的翻译流畅性。随后,再通过对偶任务模型$g$将目标语言句子$y$翻译为源语言句子$x^{'}$。如果模型$f$$g$的翻译性能较好,那么$x^{'}$$x$会十分相似。通过计算二者的{\small\bfnew{重构损失}}\index{重构损失}(Reconstruction Loss)\index{Reconstruction Loss},就可以优化模型$f$$g$的参数。这个过程可以多次迭代,从大量的无标注单语数据上不断提升性能。
\parinterval 无监督对偶学习提供了一个解决问题的思路\upcite{qin2020dual}。假设目前有两个比较弱的翻译模型,一个原始翻译模型$f$将源语言句子$\seq{x}$翻译成目标语言句子$\seq{y}$,一个对偶任务模型$g$将目标语言句子$\seq{y}$翻译成源语言句子$\seq{x}$。翻译模型可由有限的双语训练或者使用无监督机器翻译的方法得到。如图\ref{fig:16-10}所示,无监督对偶学习的做法是,先通过原始任务模型$f$将一个源语言单语句子$x$翻译为目标语言句子$y$,随后,再通过对偶任务模型$g$将目标语言句子$y$翻译为源语言句子$x^{'}$。如果模型$f$$g$的翻译性能较好,那么$x^{'}$$x$会十分相似。通过计算二者的{\small\bfnew{重构损失}}\index{重构损失}(Reconstruction Loss)\index{Reconstruction Loss},就可以优化模型$f$$g$的参数。这个过程可以多次迭代,从大量的无标注单语数据上不断提升性能。
%----------------------------------------------
\begin{figure}[htp]
......@@ -440,7 +440,7 @@
%----------------------------------------------------------------------------------------
\subsubsection{1. 参数初始化方法}
\parinterval 在解决多语言翻译问题时,首先需要在富资源语言上训练一个翻译模型,将其称之为{\small\bfnew{父模型}}\index{父模型}(Parent Model)\index{Parent Model}。在对父模型的参数进行初始化的基础上,训练低资源语言的翻译模型,称之为{\small\bfnew{子模型}}\index{子模型}(Child Model)\index{Child Model},这意味着低资源翻译模型将不会从随机初始化的参数开始学习,而是从父模型的参数开始\upcite{gu2018meta,DBLP:conf/icml/FinnAL17,DBLP:conf/naacl/GuHDL18}。这时,也可以把参数初始化看作是迁移学习。在图\ref{fig:16-14}中,左侧模型为父模型,右侧模型为子模型。这里假设从英语到汉语的翻译为富资源翻译,从英语到德语的翻译为低资源翻译,则首先用英中双语平行语料库训练出一个父模型,之后再用英语到德语的数据在父模型上微调得到子模型,这个子模型即为迁移学习的模型。此过程可以看作是在富资源语言训练模型上使用低资源语言的数据进行微调,将富资源语言中的知识迁移到低资源语言中,从而提升低资源语言的模型性能。
\parinterval 在解决多语言翻译问题时,首先需要在富资源语言上训练一个翻译模型,将其称之为{\small\bfnew{父模型}}\index{父模型}(Parent Model)\index{Parent Model}。在对父模型的参数进行初始化的基础上,训练低资源语言的翻译模型,称之为{\small\bfnew{子模型}}\index{子模型}(Child Model)\index{Child Model},这意味着低资源翻译模型将不会从随机初始化的参数开始学习,而是从父模型的参数开始\upcite{gu2018meta,DBLP:conf/icml/FinnAL17,DBLP:conf/naacl/GuHDL18}。这时,也可以把参数初始化看作是迁移学习。在图\ref{fig:16-14}中,左侧模型为父模型,右侧模型为子模型。这里假设从英语到汉语的翻译为富资源翻译,从英语到西班牙语的翻译为低资源翻译,则首先用英中双语平行语料库训练出一个父模型,之后再用英语到西班牙语的数据在父模型上微调得到子模型,这个子模型即为迁移学习的模型。此过程可以看作是在富资源语言训练模型上使用低资源语言的数据进行微调,将富资源语言中的知识迁移到低资源语言中,从而提升低资源语言的模型性能。
%----------------------------------------------
\begin{figure}[h]
......@@ -484,7 +484,7 @@
\section{无监督机器翻译}
\parinterval 低资源机器翻译的一种极端情况是:没有任何可以用于模型训练的双语平行数据。一种思路是借用多语言翻译方面的技术(见\ref{multilingual-translation-model}节),利用基于枢轴语言或者零资源的方法构建翻译系统。但是,这类方法仍然需要多个语种的平行数据。对于某一个语言对,在只有源语言和目标语言单语数据的前提下,是否仍然可以训练一个有效的翻译模型呢?这里称这种不需要双语数据的机器翻译方法为{\small\bfnew{无监督机器翻译}}\index{无监督机器翻译}(Unsupervised Machine Translation\index{Un-supervised Machine Translation})。
\parinterval 低资源机器翻译的一种极端情况是:没有任何可以用于模型训练的双语平行数据。一种思路是借用多语言翻译方面的技术(见\ref{multilingual-translation-model}节),利用基于枢轴语言或者零资源的方法构建翻译系统。但是,这类方法仍然需要多个语种的平行数据。对于某一个语言对,在只有源语言和目标语言单语数据的前提下,是否仍然可以训练一个有效的翻译模型呢?这里称这种不需要双语数据的机器翻译方法为{\small\bfnew{无监督机器翻译}}\index{无监督机器翻译}(Unsupervised Machine Translation\index{Unsupervised Machine Translation})。
\parinterval 直接进行无监督机器翻译是很困难的。一个简单可行的思路是把问题进行分解,然后分别解决各个子问题,最后形成完整的解决方案。放到无监督机器翻译里面,可以首先使用无监督方法寻找词与词之间的翻译,然后在此基础上,进一步得到句子到句子的翻译模型。这种“由小到大”的建模思路十分类似于统计机器翻译中的方法(见\chapterseven)。
......@@ -552,7 +552,7 @@
\vspace{0.5em}
\end{itemize}
\parinterval 在得到映射$\mathbi{W}$之后,对于$\mathbi{X}$中的任意一个单词$x_{i}$,通过$\mathbi{W} \mathbi{E}({x}_{i})$将其映射到空间$\mathbi{y}$中($\mathbi{E}({x}_{i})$表示的是单词$x_{i}$的词嵌入向量),然后在$\mathbi{Y}$中找到该点的最近邻点$y_{j}$,于是$y_{j}$就是$x_{i}$的翻译词,重复该过程即可归纳出种子词典$D$,第一阶段结束。事实上,由于第一阶段缺乏监督信号,得到的种子词典$D$会包含大量的噪音,因此需要进行进一步的微调。
\parinterval 在得到映射$\mathbi{W}$之后,对于$\mathbi{X}$中的任意一个单词$x_{i}$,通过$\mathbi{W} \mathbi{E}({x}_{i})$将其映射到空间$\mathbi{Y}$中($\mathbi{E}({x}_{i})$表示的是单词$x_{i}$的词嵌入向量),然后在$\mathbi{Y}$中找到该点的最近邻点$y_{j}$,于是$y_{j}$就是$x_{i}$的翻译词,重复该过程即可归纳出种子词典$D$,第一阶段结束。事实上,由于第一阶段缺乏监督信号,得到的种子词典$D$会包含大量的噪音,因此需要进行进一步的微调。
\parinterval 微调的原理普遍基于普氏分析\upcite{DBLP:journals/corr/MikolovLS13}。假设现在有一个种子词典$D=\left\{x_{i}, y_{i}\right\}$其中${i \in\{1, n\}}$,和两个单语词嵌入$\mathbi{X}$$\mathbi{Y}$,那么就可以将$D$作为{\small\bfnew{映射锚点}}\index{映射锚点}(Anchor\index{Anchor})学习一个转移矩阵$\mathbi{W}$,使得$\mathbi{W} \mathbi{X}$$\mathbi{Y}$这两个空间尽可能相近,此外通过对$\mathbi{W}$施加正交约束可以显著提高性能\upcite{DBLP:conf/naacl/XingWLL15},于是这个优化问题就转变成了{\small\bfnew{普鲁克问题}}\index{普鲁克问题}(Procrustes Problem\index{Procrustes Problem}\upcite{DBLP:conf/iclr/SmithTHH17},可以通过{\small\bfnew{奇异值分解}}\index{奇异值分解}(Singular Value Decomposition,SVD\index{Singular Value Decomposition})来获得近似解:
......@@ -565,8 +565,7 @@
\noindent 其中, $\|\cdot\|_{\mathrm{F}}$表示矩阵的Frobenius范数,即矩阵元素绝对值的平方和再开方,$d$是词嵌入的维度,$\mathbb{R}$是实数,$O_d(\mathbb{R})$表示$d\times d$的实数空间,$\operatorname{SVD}(\cdot)$表示奇异值分解,$\mathbi{Y}'$$\mathbi{X}'$中的单词来自$D$且行对齐。利用上式可以获得新的$\mathbi{W}$,通过$\mathbi{W}$可以归纳出新的$D$,如此迭代进行微调最后即可以得到收敛的$D$
\parinterval 较早的无监督方法是基于GAN的方法\upcite{DBLP:conf/acl/ZhangLLS17,DBLP:conf/emnlp/ZhangLLS17,DBLP:conf/iclr/LampleCRDJ18},这是一个很自然的想法,利用生成器产生映射然后用判别器来区别两个空间。然而研究表明GAN缺乏稳定性,容易在低资源语言对上失败\upcite{hartmann2018empirical},因此有不少改进的工作,比如:利用{\small\bfnew{变分自编码器}}\index{变分自编码器}(Variational Autoencoders,VAEs)\index{Variational Autoencoders}来捕获更深层次的语义信息并结合对抗训练的方法\upcite{DBLP:conf/emnlp/DouZH18,DBLP:conf/naacl/MohiuddinJ19};通过改进最近邻点的度量函数来提升性能的方法\upcite{DBLP:conf/acl/HuangQC19,DBLP:conf/emnlp/JoulinBMJG18};利用多语言信号来提升性能的方法\upcite{DBLP:conf/emnlp/ChenC18,DBLP:conf/emnlp/TaitelbaumCG19,DBLP:journals/corr/abs-1811-01124,DBLP:conf/naacl/HeymanVVM19};也有一些工作舍弃GAN,通过直接优化空间距离来进行单词的匹配\upcite{DBLP:conf/emnlp/HoshenW18,DBLP:conf/emnlp/XuYOW18,DBLP:conf/emnlp/Alvarez-MelisJ18,DBLP:conf/emnlp/MukherjeeYH18}。此外,也有一些工作旨在分析或提升无监督词典归纳的健壮性,例如,通过大量实验来分析无监督词典归纳任务的局限性、难点以及挑战\upcite{DBLP:conf/acl/SogaardVR18,DBLP:conf/acl/OrmazabalALSA19,DBLP:conf/emnlp/VulicGRK19,DBLP:conf/emnlp/HartmannKS18};分析和对比目前各种无监督方法的性能\upcite{DBLP:conf/nips/HartmannKS19};通过实验分析目前所用的数据集存在的问题\upcite{DBLP:conf/emnlp/Kementchedjhieva19}
\parinterval 较早的无监督方法是基于GAN的方法\upcite{DBLP:conf/acl/ZhangLLS17,DBLP:conf/emnlp/ZhangLLS17,DBLP:conf/iclr/LampleCRDJ18},这是一个很自然的想法,利用生成器产生映射然后用判别器来区别两个空间。然而研究表明GAN缺乏稳定性,容易在低资源语言对上失败\upcite{hartmann2018empirical},因此有不少改进的工作,比如:利用{\small\bfnew{变分自编码器}}\index{变分自编码器}(Variational Autoencoders,VAEs)\index{Variational Autoencoders}来捕获更深层次的语义信息并结合对抗训练的方法\upcite{DBLP:conf/emnlp/DouZH18,DBLP:conf/naacl/MohiuddinJ19};通过改进最近邻点的度量函数来提升性能的方法\upcite{DBLP:conf/acl/HuangQC19,DBLP:conf/emnlp/JoulinBMJG18};利用多语言信号来提升性能的方法\upcite{DBLP:conf/emnlp/ChenC18,DBLP:conf/emnlp/TaitelbaumCG19,DBLP:journals/corr/abs-1811-01124,DBLP:conf/naacl/HeymanVVM19};也有一些工作舍弃GAN,通过直接优化空间距离来进行单词的匹配\upcite{DBLP:conf/emnlp/HoshenW18,DBLP:conf/emnlp/XuYOW18,DBLP:conf/emnlp/Alvarez-MelisJ18,DBLP:conf/emnlp/MukherjeeYH18}
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论