Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
cde8b27c
Commit
cde8b27c
authored
Nov 06, 2020
by
曹润柘
Browse files
Options
Browse Files
Download
Plain Diff
合并分支 'master' 到 'caorunzhe'
Master 查看合并请求
!344
parents
18a73e7d
7d05e01f
隐藏空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
2 行增加
和
2 行删除
+2
-2
Chapter9/chapter9.tex
+1
-1
mt-book-xelatex.tex
+1
-1
没有找到文件。
Chapter9/chapter9.tex
查看文件 @
cde8b27c
...
...
@@ -2177,7 +2177,7 @@ Jobs was the CEO of {\red{\underline{apple}}}.
\vspace
{
0.5em
}
\item
端到端学习是神经网络方法的特点之一。这样,系统开发者不需要设计输入和输出的隐含结构,甚至连特征工程都不再需要。但是,另一方面,由于这种端到端学习完全由神经网络自行完成,整个学习过程没有人的先验知识做指导,导致学习的结构和参数很难进行解释。针对这个问题也有很多研究者进行
{
\small\sffamily\bfseries
{
可解释机器学习
}}
\index
{
可解释机器学习
}
(Explainable Machine Learning)
\index
{
Explainable Machine Learning
}
的研究
\upcite
{
DBLP:journals/corr/abs-1905-09418,moraffah2020causal,blodgett2020language,
}
。对于自然语言处理,方法的可解释性是十分必要的。从另一个角度说,如何使用先验知识改善端到端学习也是很多人关注的方向
\upcite
{
arthur2016incorporating,zhang-etal-2017-prior,yang2017improving
}
,比如,如何使用句法知识改善自然语言处理模型
\upcite
{
stahlberg2016syntactically,currey2019incorporating,currey2018multi,marevcek2018extracting,blevins2018deep
}
。
\vspace
{
0.5em
}
\item
为了进一步提高神经语言模型性能,除了改进模型,还可以在模型中引入新的结构或是其他有效信息,该领域也有很多典型工作值得关注。例如在神经语言模型中引入除了词嵌入以外的单词特征,如语言特征(形态、语法、语义特征等)
\upcite
{
Wu2012FactoredLM,Adel2015SyntacticAS
}
、上下文信息
\upcite
{
mikolov2012context,Wang2015LargerContextLM
}
、知识图谱等外部知识
\upcite
{
Ahn2016ANK
}
;或是在神经语言模型中引入字符级信息,将其作为字符特征单独
\upcite
{
Kim2016CharacterAwareNL,Hwang2017CharacterlevelLM
}
或与单词特征一起
\upcite
{
Onoe2016GatedWR,Verwimp2017CharacterWordLL
}
送入模型中;在神经语言模型中引入双向模型也是一种十分有效的尝试,在单词预测时可以同时利用来自过去和未来的文本信息
\upcite
{
Graves2013HybridSR,bahdanau2014neural,Peters2018DeepCW
}
;在神经语言模型中引入注意力机制能够明显提高模型性能,
\ref
{
sec:9.5.2.2
}
节对此有简短介绍,除了Transformer模型,GPT
\upcite
{
radford2018improving
}
和BERT
\upcite
{
devlin2019bert
}
也是不错的工作
。
\item
为了进一步提高神经语言模型性能,除了改进模型,还可以在模型中引入新的结构或是其他有效信息,该领域也有很多典型工作值得关注。例如在神经语言模型中引入除了词嵌入以外的单词特征,如语言特征(形态、语法、语义特征等)
\upcite
{
Wu2012FactoredLM,Adel2015SyntacticAS
}
、上下文信息
\upcite
{
mikolov2012context,Wang2015LargerContextLM
}
、知识图谱等外部知识
\upcite
{
Ahn2016ANK
}
;或是在神经语言模型中引入字符级信息,将其作为字符特征单独
\upcite
{
Kim2016CharacterAwareNL,Hwang2017CharacterlevelLM
}
或与单词特征一起
\upcite
{
Onoe2016GatedWR,Verwimp2017CharacterWordLL
}
送入模型中;在神经语言模型中引入双向模型也是一种十分有效的尝试,在单词预测时可以同时利用来自过去和未来的文本信息
\upcite
{
Graves2013HybridSR,bahdanau2014neural,Peters2018DeepCW
}
。
\vspace
{
0.5em
}
\item
词嵌入是自然语言处理近些年的重要进展。所谓“嵌入”是一类方法,理论上,把一个事物进行分布式表示的过程都可以被看作是广义上的“嵌入”。基于这种思想的表示学习也成为了自然语言处理中的前沿方法。比如,如何对树结构,甚至图结构进行分布式表示
\upcite
{
DBLP:journals/corr/abs-1809-01854,Yin2018StructVAETL,Aharoni2017TowardsSN
}
成为了分析自然语言的重要方法。此外,除了语言建模,还有很多方式可以进行词嵌入的学习,比如,SENNA
\upcite
{
collobert2011natural
}
、word2vec
\upcite
{
DBLP:journals/corr/abs-1301-3781,mikolov2013distributed
}
、Glove
\upcite
{
DBLP:conf/emnlp/PenningtonSM14
}
、CoVe
\upcite
{
mccann2017learned
}
等。
\vspace
{
0.5em
}
...
...
mt-book-xelatex.tex
查看文件 @
cde8b27c
...
...
@@ -107,7 +107,7 @@
{
\large
\noindent
{
\color
{
red
}
在此感谢为本书做出贡献的小牛团队(部分)成员
}
\\
\noindent
曹润柘、曾信、孟霞、单韦乔、姜雨帆、王子扬、刘辉、许诺、李北、刘继强、张哲旸、周书含、周涛、李炎洋、林野、陈贺轩、刘晓倩、牛蕊、田丰宁、杜权、李垠桥、许晨、张裕浩、胡驰、冯凯、王泽洋、刘腾博、刘兴宇、徐萍、赵闯、高博、张春良、王会珍、张俐、杨木润、宁义明、李洋、秦浩、胡明涵
\\
\noindent
曹润柘、曾信、孟霞、单韦乔、姜雨帆、王子扬、刘辉、许诺、李北、刘继强、张哲旸、周书含、周涛、李炎洋、林野、陈贺轩、刘晓倩、牛蕊、田丰宁、杜权、李垠桥、许晨、张裕浩、胡驰、冯凯、王泽洋、刘腾博、
罗应峰、魏冰浩、
刘兴宇、徐萍、赵闯、高博、张春良、王会珍、张俐、杨木润、宁义明、李洋、秦浩、胡明涵
\\
}
%----------------------------------------------------------------------------------------
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论