Commit d0760596 by 曹润柘

更新 chapter5.tex

parent 0ca156f1
......@@ -138,7 +138,7 @@ IBM模型由Peter F. Brown等人于上世纪九十年代初提出\upcite{DBLP:jo
\parinterval 对于第二个问题,尽管机器能够找到很多译文选择路径,但它并不知道哪些路径是好的。说地再直白一些,简单地枚举路径实际上就是一个体力活,没有太多的智能。因此计算机还需要再聪明一些,运用它的能够“掌握”的知识判断翻译结果的好与坏。这一步是最具挑战的,当然也有很多思路来解决这个问题。在统计机器翻译中,这个问题被定义为:设计一种统计模型,它可以给每个译文一个可能性,而这个可能性越高表明译文越接近人工翻译。
\parinterval 如图\ref{fig:5-4}所示,每个单词翻译候选的侧黑色框里的数字就是单词的翻译概率,使用这些单词的翻译概率,可以得到整句译文的概率(用符号$\funp{P}$表示)。这样,就用概率化的模型描述了每个翻译候选的可能性。基于这些翻译候选的可能性,机器翻译系统可以对所有的翻译路径进行打分,比如,图\ref{fig:5-4}中第一条路径的分数为0.042,第二条是0.006,以此类推。最后,系统可以选择分数最高的路径作为源语言句子的最终译文。
\parinterval 如图\ref{fig:5-4}所示,每个单词翻译候选的侧黑色框里的数字就是单词的翻译概率,使用这些单词的翻译概率,可以得到整句译文的概率(用符号$\funp{P}$表示)。这样,就用概率化的模型描述了每个翻译候选的可能性。基于这些翻译候选的可能性,机器翻译系统可以对所有的翻译路径进行打分,比如,图\ref{fig:5-4}中第一条路径的分数为0.042,第二条是0.006,以此类推。最后,系统可以选择分数最高的路径作为源语言句子的最终译文。
%----------------------------------------------
\begin{figure}[htp]
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论