Commit d141ffa7 by 曹润柘

合并分支 'master' 到 'caorunzhe'

Master

查看合并请求 !241
parents e4761b13 4dd93ed1
......@@ -163,7 +163,7 @@
\caption{神经机器翻译与统计机器翻译系统的译文错误率HTER[\%](忽略编辑距离中的移动操作)\upcite{Bentivogli2016NeuralVP}}
\label{tab:10-1}
\begin{tabular}{r|llc}
系统 & 单词 & 词根 & \%Δ \\ \hline
系统 & 单词 & 词根 & Δ \\ \hline
PBSY & 27.1 & 22.5 & -16.9 \\
HPB & 28.7 & 23.5 & -18.4 \\
SPB & 28.3 & 23.2 & -18.0 \\
......
......@@ -51,7 +51,7 @@
\parinterval {\small\bfnew{概率}}\index{概率}(Probability)\index{Probability}是度量随机事件呈现其每个可能状态的可能性的数值,本质上它是一个测度函数\upcite{mao-prob-book-2011,kolmogorov2018foundations}。概率的大小表征了随机事件在一次试验中发生的可能性大小。用$\funp{P}(\cdot )$表示一个随机事件的可能性,即事件发生的概率。比如$\funp{P}(\textrm{太阳从东方升起})$表示“太阳从东方升起”的可能性,同理,$\funp{P}(A=B)$ 表示的就是“$A=B$”这件事的可能性。
\parinterval 在实际问题中,往往需要得到随机变量的概率值。但是,真实的概率值可能是无法准确知道的,这时就需要对概率进行{\small\sffamily\bfseries{估计}}\index{估计},得到的结果是概率的{\small\sffamily\bfseries{估计值}}\index{估计值}(Estimate)\index{Estimate}。概率值的估计是概率论和统计学中的经典问题,有十分多样的方法可以选择。比如,一个很简单的方法是利用相对频次作为概率的估计值。如果$\{x_1,x_2,\dots,x_n \}$ 是一个试验的样本空间,在相同情况下重复试验$N$次,观察到样本$x_i (1\leq{i}\leq{n})$的次数为$n (x_i )$,那么$x_i$在这$N$次试验中的相对频率是$\frac{n(x_i )}{N}$。 当$N$越来越大时,相对概率也就越来越接近真实概率$\funp{P}(x_i)$,即$\lim_{N \to \infty}\frac{n(x_i )}{N}=\funp{P}(x_i)$。 实际上,很多概率模型都等同于相对频次估计。比如,对于一个服从多项式分布的变量,它的极大似然估计就可以用相对频次估计实现。
\parinterval 在实际问题中,往往需要得到随机变量的概率值。但是,真实的概率值可能是无法准确知道的,这时就需要对概率进行{\small\sffamily\bfseries{估计}}\index{估计}(Estimation\index{Estimation},得到的结果是概率的{\small\sffamily\bfseries{估计值}}\index{估计值}(Estimate)\index{Estimate}。概率值的估计是概率论和统计学中的经典问题,有十分多样的方法可以选择。比如,一个很简单的方法是利用相对频次作为概率的估计值。如果$\{x_1,x_2,\dots,x_n \}$ 是一个试验的样本空间,在相同情况下重复试验$N$次,观察到样本$x_i (1\leq{i}\leq{n})$的次数为$n (x_i )$,那么$x_i$在这$N$次试验中的相对频率是$\frac{n(x_i )}{N}$。 当$N$越来越大时,相对概率也就越来越接近真实概率$\funp{P}(x_i)$,即$\lim_{N \to \infty}\frac{n(x_i )}{N}=\funp{P}(x_i)$。 实际上,很多概率模型都等同于相对频次估计。比如,对于一个服从多项式分布的变量,它的极大似然估计就可以用相对频次估计实现。
\parinterval 概率函数是用函数形式给出离散变量每个取值发生的概率,其实就是将变量的概率分布转化为数学表达形式。如果把$A$看做一个离散变量,$a$看做变量$A$的一个取值,那么$\funp{P}(A)$被称作变量$A$的概率函数,$\funp{P}(A=a)$被称作$A = a$的概率值,简记为$\funp{P}(a)$。例如,在相同条件下掷一个骰子50次,用$A$表示投骰子出现的点数这个离散变量,$a_i$表示点数的取值,$\funp{P}_i$表示$A=a_i$的概率值。表\ref{tab:2-1}$A$的概率分布,给出了$A$的所有取值及其概率。
......@@ -470,7 +470,7 @@ F(x)=\int_{-\infty}^x f(x)\textrm{d}x
\parinterval 这样,$w_1 w_2 \ldots w_m$的生成可以被看作是逐个生成每个单词的过程,即首先生成$w_1$,然后根据$w_1$再生成$w_2$,然后根据$w_1 w_2$再生成$w_3$,以此类推,直到根据所有前$m-1$个词生成序列的最后一个单词$w_m$。这个模型把联合概率$\funp{P}(w_1 w_2 \ldots w_m)$分解为多个条件概率的乘积,虽然对生成序列的过程进行了分解,但是模型的复杂度和以前是一样的,比如,$\funp{P}(w_m|w_1 w_2 \ldots w_{m-1})$ 仍然不好计算。
\parinterval 换一个角度看,$\funp{P}(w_m|w_1 w_2 \ldots w_{m-1})$体现了一种基于“历史”的单词生成模型,也就是把前面生成的所有单词作为“历史”,并参考这个“历史”生成当前单词。但是这个“历史”的长度和整个序列长度是相关的,也是一种长度变化的历史序列。为了化简问题,一种简单的想法是使用定长历史,比如,每次只考虑前面$n-1$个历史单词来生成当前单词。这就是$n$-gram语言模型,其中$n$-gram 表示$n$个连续单词构成的单元,也被称作{\small\bfnew{n元语法单元}}\index{n元语法单元}。这个模型的数学描述如下:
\parinterval 换一个角度看,$\funp{P}(w_m|w_1 w_2 \ldots w_{m-1})$体现了一种基于“历史”的单词生成模型,也就是把前面生成的所有单词作为“历史”,并参考这个“历史”生成当前单词。但是这个“历史”的长度和整个序列长度是相关的,也是一种长度变化的历史序列。为了化简问题,一种简单的想法是使用定长历史,比如,每次只考虑前面$n-1$个历史单词来生成当前单词。这就是$n$-gram语言模型,其中$n$-gram 表示$n$个连续单词构成的单元,也被称作{\small\bfnew{$n$元语法单元}}\index{$n$元语法单元}。这个模型的数学描述如下:
\begin{eqnarray}
\funp{P}(w_m|w_1 w_2 \ldots w_{m-1}) = \funp{P}(w_m|w_{m-n+1} \ldots w_{m-1})
\label{eq:2-23}
......
......@@ -841,7 +841,7 @@ span\textrm{[0,4]}&=&\textrm{“猫} \quad \textrm{喜欢} \quad \textrm{吃} \q
\subsubsection{2. 基于树结构的翻译推导}
\parinterval 规则中的变量预示着一种替换操作,即变量可以被其他树结构替换。实际上,上面的树到树翻译规则就是一种{\small\bfnew{同步树替换文法规则}}\index{同步树替换文法规则}(Synchronous Tree Substitution Grammar Rule)\index{Synchronous Tree Substitution Grammar Rule}。不论是源语言端还是目标语言端,都可以通过这种替换操作不断生成更大的树结构,也就是通过树片段的组合得到更大的树片段。图\ref{fig:8-20}就展示了树替换操作的一个实例。
\parinterval 规则中的变量预示着一种替换操作,即变量可以被其他树结构替换。实际上,上面的树到树翻译规则就是一种{\small\bfnew{同步树替换文法}}\index{同步树替换文法}(Synchronous Tree-Substitution Grammar)\index{Synchronous Tree-Substitution Grammar}规则。不论是源语言端还是目标语言端,都可以通过这种替换操作不断生成更大的树结构,也就是通过树片段的组合得到更大的树片段。图\ref{fig:8-20}就展示了树替换操作的一个实例。
%----------------------------------------------
\begin{figure}[htp]
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论