\node [anchor=north west] (line9) at ([yshift=-0.1em]line8.south west) {6: \ \ \ \ \textbf{foreach}$t_v$ appears at least one of $\{\seq{t}^{[1]},...,\seq{t}^{[K]}\}$\textbf{do}};
\node [anchor=north west] (line11) at ([yshift=-0.1em]line10.south west) {8: \ \ \ \ \ \ \ \textbf{foreach}$s_u$ appears at least one of $\{\seq{s}^{[1]},...,\seq{s}^{[K]}\}$\textbf{do}};
\node [anchor=north west] (line6) at ([yshift=-0.1em]line5.south west) {3: \quad Loop until $f(\cdot|\cdot)$ converges};
\node [anchor=north west] (line7) at ([yshift=-0.1em]line6.south west) {4: \quad\quad\textbf{foreach}$k =1$ to $K$\textbf{do}};
\node [anchor=north west] (line8) at ([yshift=-0.1em]line7.south west) {5: \quad\quad\quad\footnotesize{$c_{\mathbb{E}}(\seq{s}_u|\seq{t}_v;\seq{s}^{[k]},\seq{t}^{[k]})=\sum\limits_{j=1}^{|\seq{s}^{[k]}|}\delta(s_j,s_u)\sum\limits_{i=0}^{|\seq{t}^{[k]}|}\delta(t_i,t_v)\cdot\frac{f(s_u|t_v)}{\sum_{i=0}^{l}f(s_u|t_i)}$}\normalsize{}};
\node [anchor=north west] (line9) at ([yshift=-0.1em]line8.south west) {6: \quad\quad\textbf{foreach}$t_v$ appears at least one of $\{\seq{t}^{[1]},...,\seq{t}^{[K]}\}$\textbf{do}};
\node [anchor=north west] (line10) at ([yshift=-0.1em]line9.south west) {7: \quad\quad\quad$\lambda_{t_v}^{'}=\sum_{s_u}\sum_{k=1}^{K} c_{\mathbb{E}}(s_u|t_v;\seq{s}^{[k]},\seq{t}^{[k]})$};
\node [anchor=north west] (line11) at ([yshift=-0.1em]line10.south west) {8: \quad\quad\quad\textbf{foreach}$s_u$ appears at least one of $\{\seq{s}^{[1]},...,\seq{s}^{[K]}\}$\textbf{do}};
\node [anchor=north west] (line12) at ([yshift=-0.1em]line11.south west) {9: \quad\quad\quad\quad$f(s_u|t_v)=\sum_{k=1}^{K} c_{\mathbb{E}}(s_u|t_v;\seq{s}^{[k]},\seq{t}^{[k]})\cdot(\lambda_{t_v}^{'})^{-1}$};
\node [anchor=north west] (line13) at ([yshift=-0.1em]line12.south west) {10: \textbf{return}$f(\cdot|\cdot)$};
\parinterval 公式\ref{eq:5-7}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\ref{eq:5-7}计算得到的函数$g(\cdot)$的值却是一样的。
\parinterval 公式\eqref{eq:5-7}定义的$g(\seq{s},\seq{t})$存在的问题是没有考虑词序信息。这里用一个简单的例子说明这个问题。如图\ref{fig:5-8}所示,源语言句子“我 对 你 感到 满意”有两个翻译结果,第一个翻译结果是“I am satisfied with you”,第二个是“I with you am satisfied”。虽然这两个译文包含的目标语单词是一样的,但词序存在很大差异。比如,它们都选择了“satisfied”作为源语单词“满意”的译文,但是在第一个翻译结果中“satisfied”处于第3个位置,而第二个结果中处于最后的位置。显然第一个翻译结果更符合英语的表达习惯,翻译的质量更高。遗憾的是,对于有明显差异的两个译文,公式\eqref{eq:5-7}计算得到的函数$g(\cdot)$的值却是一样的。
\item 随着词对齐概念的不断深入,也有很多词对齐方面的工作并不依赖IBM模型。比如,可以直接使用判别式模型利用分类器解决词对齐问题\upcite{ittycheriah2005maximum};使用带参数控制的动态规划方法来提高词对齐准确率\upcite{DBLP:conf/naacl/GaleC91};甚至可以把对齐的思想用于短语和句法结构的双语对应\upcite{xiao2013unsupervised};无监督的对称词对齐方法,正向和反向模型联合训练,结合数据的相似性\upcite{DBLP:conf/naacl/LiangTK06};除了GIZA++,研究人员也开发了很多优秀的自动对齐工具,比如,FastAlign\upcite{DBLP:conf/naacl/DyerCS13}、Berkeley Word Aligner\upcite{taskar2005a}等,这些工具现在也有很广泛的应用。
\parinterval IBM五个模型都是基于一个词对齐的假设\ \dash\ 一个源语言单词最多只能对齐到一个目标语言单词。这个约束大大降低了建模的难度。在法英翻译中一对多的对齐情况并不多见,这个假设带来的问题也不是那么严重。但是,在像汉英翻译这样的任务中,一个汉语单词对应多个英语单词的翻译很常见,这时IBM模型的词对齐假设就表现出了明显的问题。比如在翻译`` 我/会/试一试/。''\ $\to$\ ``I will have a try .''时,IBM模型根本不能把单词``试一试''对齐到三个单词``have a try'',因而可能无法得到正确的翻译结果。
\parinterval IBM五个模型都是基于一个词对齐的假设\ \dash\ 一个源语言单词最多只能对齐到一个目标语言单词。这个约束大大降低了建模的难度。在法英翻译中一对多的对齐情况并不多见,这个假设带来的问题也不是那么严重。但是,在像汉英翻译这样的任务中,一个汉语单词对应多个英语单词的翻译很常见,这时IBM模型的词对齐假设就表现出了明显的问题。比如在翻译“ 我/会/试一试/。”\ $\to$\ “I will have a try .”时,IBM模型根本不能把单词“试一试”对齐到三个单词“have a try”,因而可能无法得到正确的翻译结果。
\node[anchor=west] (ref) at (0,0) {{\sffamily\bfseries{人工翻译:}}{\red{After}} North Korea demanded concessions from U.S. again before the start of a new round of six-nation talks ...};
\node[anchor=north west] (hifst) at ([yshift=-0.3em]ref.south west) {{\sffamily\bfseries{机器翻译:}}\blue{In}\black{} the new round of six-nation talks on North Korea again demanded that U.S. in the former promise ...};
\node[anchor=west] (ref) at (0,0) {{\sffamily\bfseries{人工翻译:}}{\red{After}} the school team won the Championship of the China University Basketball Association for the first time ...};
\node[anchor=north west] (hifst) at ([yshift=-0.3em]ref.south west) {{\sffamily\bfseries{机器翻译:}}\blue{In}\black{} the school team won the Chinese College Basketball League Championship for the first time ...};
{
\node[anchor=north west] (synhifst) at ([yshift=-0.3em]hifst.south west) {\sffamily\bfseries{更好?:}};
\node[anchor=north west] (synhifst) at ([yshift=-0.2em]hifst.south west) {\sffamily\bfseries{更好?:}};
\node[anchor=west, fill=red!20!white, inner sep=0.3em] (synhifstpart1) at ([xshift=-0.5em]synhifst.east) {After};
\node[anchor=west, fill=red!20!white, inner sep=0.3em] (synhifstpart1) at ([xshift=-0.3em]synhifst.east) {After};
\node[anchor=west, fill=blue!20!white, inner sep=0.25em] (synhifstpart2) at ([xshift=0.1em,yshift=-0.05em]synhifstpart1.east) {North Korea again demanded that U.S. promised concessions before the new round of six-nation talks};
\node[anchor=west, fill=blue!20!white, inner sep=0.25em] (synhifstpart2) at ([xshift=0.1em,yshift=-0.05em]synhifstpart1.east) {the school team won the Championship of the China University Basketball Association for the first time};
\node[anchor=west] (synhifstpart3) at ([xshift=-0.2em]synhifstpart2.east) {...};
}
...
...
@@ -25,9 +27,9 @@
\node [anchor=west] (inputlabel) at ([yshift=-0.4in]synhifst.west) {\sffamily\bfseries{输入:}};
\node [anchor=west,minimum height=12pt] (inputseg1) at (inputlabel.east) {在$_1$};
\node[anchor=west] (ref) at (0,0) {{\sffamily\bfseries{参考答案:}} The Chinese star performance troupe presented a wonderful Peking opera as well as singing and dancing };
\node[anchor=north west] (ref2) at (ref.south west) {{\color{white}\sffamily\bfseries{Reference:}} performance to Hong Kong audience .};
\node[anchor=north west] (ref2) at (ref.south west) {{\color{white}\sffamily\bfseries{Reference:}} performance to the national audience .};
\node[anchor=north west] (hifst) at (ref2.south west) {{\sffamily\bfseries{层次短语系统:}} Star troupe of China, highlights of Peking opera and dance show to the audience of Hong Kong .};
\node[anchor=north west] (hifst) at (ref2.south west) {{\sffamily\bfseries{层次短语系统:}} Star troupe of China, highlights of Peking opera and dance show to the audience of the national .};
\node[anchor=north west] (synhifst) at (hifst.south west) {{\sffamily\bfseries{句法系统:}} Chinese star troupe};
...
...
@@ -21,7 +21,7 @@
\node[anchor=west, fill=red!20!white, inner sep=0.40em] (synhifstpart4) at ([xshift=0.2em]synhifstpart3.east) {to};
\node[anchor=west, fill=purple!20!white, inner sep=0.25em] (synhifstpart5) at ([xshift=0.2em]synhifstpart4.east) {Hong Kong audience};
\node[anchor=west, fill=purple!20!white, inner sep=0.25em] (synhifstpart5) at ([xshift=0.2em]synhifstpart4.east) {the national audience};
\node[anchor=west] (synhifstpart6) at (synhifstpart5.east) {.};
\parinterval 再来看一个翻译实例\upcite{Chiang2012Hope},图\ref{fig:8-4}是一个基于短语的机器翻译系统的翻译结果。这个例子中的调序有一些复杂,比如,“少数/国家/之一”和“与/北韩/有/邦交”的英文翻译都需要进行调序,分别是“one of the few countries”和“have diplomatic relations with North Korea”。基于短语的系统可以很好地处理这些调序问题,因为它们仅仅使用了局部的信息。但是,系统却无法在这两个短语(1和2)之间进行正确的调序。
\parinterval 再来看一个翻译实例\upcite{Chiang2012Hope},图\ref{fig:8-4}是一个基于短语的机器翻译系统的翻译结果。这个例子中的调序有一些复杂,比如,“多数/国家/之一”和“与/中国/有/邦交”的英文翻译都需要进行调序,分别是“one of the many countries”和“have diplomatic relations with China”。基于短语的系统可以很好地处理这些调序问题,因为它们仅仅使用了局部的信息。但是,系统却无法在这两个短语(1和2)之间进行正确的调序。