Commit ddc67f0b by zengxin

合并分支 'zengxin' 到 'caorunzhe'

12

查看合并请求 !354
parents 00d629b3 1fba0e16
......@@ -58,7 +58,8 @@
\parinterval 自注意力机制也可以被看做是一个序列表示模型。比如,对于每个目标位置$j$,都生成一个与之对应的源语句子表示,它的形式为:
\begin{eqnarray}
\mathbi{C}_j & = & \sum_i \alpha_{i,j}\vectorn{\emph{h}}_i \label{eq:12-4201}
\mathbi{C}_j & = & \sum_i \alpha_{i,j}\vectorn{\emph{h}}_i
\label{eq:12-4201}
\end{eqnarray}
\noindent 其中,$\vectorn{\emph{h}}_i$ 为源语句子每个位置的表示结果,$\alpha_{i,j}$是目标位置$j$$\vectorn{\emph{h}}_i$的注意力权重。而自注意力机制不仅可以处理两种语言句子之间的对应,它也可以对单语句子进行表示。以源语句子为例,自注意力机制将序列中每个位置的表示$\vectorn{\emph{h}}_i$看作$\mathrm{query}$(查询),并且将所有位置的表示看作$\mathrm{key}$(键)和$\mathrm{value}$ (值)。自注意力模型通过计算当前位置与所有位置的匹配程度,也就是在注意力机制中提到的注意力权重,来对各个位置的$\mathrm{value}$进行加权求和。得到的结果可以被看作是在这个句子中当前位置的抽象表示。这个过程,可以叠加多次,形成多层注意力模型,对输入序列中各个位置进行更深层的表示。
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论