Commit e23ea973 by zengxin

11 编辑反馈

parent cb7e9d5b
...@@ -201,9 +201,9 @@ ...@@ -201,9 +201,9 @@
\end{figure} \end{figure}
%---------------------------------------------- %----------------------------------------------
\parinterval 针对不定长序列,一种可行的方法是使用之前介绍过的循环神经网络,其本质也是基于权重共享的想法,在不同的时间步复用相同的循环神经网络单元进行处理。但是,循环神经网络最大的弊端在于每一时刻的计算都依赖于上一时刻的结果,因此只能对序列进行串行处理,无法充分利用硬件设备进行并行计算,导致效率相对较低。此外,在处理较长的序列时,这种串行的方式很难捕捉长距离的依赖关系。相比之下,卷积神经网络采用共享参数的方式处理固定大小窗口内的信息,且不同位置的卷积操作之间没有相互依赖,因此可以对序列进行高效地并行处理。同时,针对序列中距离较长的依赖关系,可以通过堆叠多层卷积层来扩大{\small\bfnew{感受野}}\index{感受野} (Receptive Field)\index{Receptive Field} ,这里感受野指能够影响神经元输出的原始输入数据区域的大小。图\ref{fig:11-9}对比了这两种结构,可以看出,为了捕捉$\mathbi{e}_2$$\mathbi{e}_8$ 之间的联系,串行结构需要顺序的6次操作,和序列长度相关。而该卷积神经网络中,卷积操作每次对三个词进行计算,仅需要4层卷积计算就能得到$\mathbi{e}_2$$\mathbi{e}_8$之间的联系,其操作数和卷积核的大小相关,相比于串行的方式具有更短的路径和更少的非线性计算,更容易进行训练。因此,也有许多研究人员在许多自然语言处理任务上尝试使用卷积神经网络进行序列建模\upcite{Kim2014ConvolutionalNN,Santos2014DeepCN,Kalchbrenner2014ACN,DBLP:conf/naacl/Johnson015,DBLP:conf/naacl/NguyenG15} \parinterval 针对不定长序列,一种可行的方法是使用之前介绍过的循环神经网络进行信息提取,其本质也是基于权重共享的想法,在不同的时间步复用相同的循环神经网络单元进行处理。但是,循环神经网络最大的弊端在于每一时刻的计算都依赖于上一时刻的结果,因此只能对序列进行串行处理,无法充分利用硬件设备进行并行计算,导致效率相对较低。此外,在处理较长的序列时,这种串行的方式很难捕捉长距离的依赖关系。相比之下,卷积神经网络采用共享参数的方式处理固定大小窗口内的信息,且不同位置的卷积操作之间没有相互依赖,因此可以对序列进行高效地并行处理。同时,针对序列中距离较长的依赖关系,可以通过堆叠多层卷积层来扩大{\small\bfnew{感受野}}\index{感受野} (Receptive Field)\index{Receptive Field} ,这里感受野指能够影响神经元输出的原始输入数据区域的大小。图\ref{fig:11-9}对比了这两种结构,可以看出,为了捕捉$\mathbi{e}_2$$\mathbi{e}_8$ 之间的联系,串行结构需要顺序地进行6次操作,和序列长度相关。而该卷积神经网络中,卷积操作每次对三个词进行计算,仅需要4层卷积计算就能得到$\mathbi{e}_2$$\mathbi{e}_8$之间的联系,其操作数和卷积核的大小相关,相比于串行的方式具有更短的路径和更少的非线性计算,更容易进行训练。因此,也有许多研究人员在许多自然语言处理任务上尝试使用卷积神经网络进行序列建模\upcite{Kim2014ConvolutionalNN,Santos2014DeepCN,Kalchbrenner2014ACN,DBLP:conf/naacl/Johnson015,DBLP:conf/naacl/NguyenG15}
\parinterval 区别于传统图像上的卷积操作,在面向序列的卷积操作中,卷积核只在序列这一维度进行移动,用来捕捉连续的多个词之间的特征。需要注意的是,由于单词通常由一个实数向量表示(词嵌入),因此可以将词嵌入的维度看作是卷积操作中的通道数。图\ref{fig:11-10}就是一个基于序列卷积的文本分类模型,模型的输入是维度大小为$m\times O $的句子表示,$m$表示句子长度,$O$表示卷积核通道数,其值等于词嵌入维度,模型使用多个不同(对应图中不同的颜色)的卷积核来对序列进行特征提取,得到了多个不同的特征序列。然后使用池化层降低表示维度,得到了一组和序列长度无关的特征表示。基于这组压缩过的特征表示,模型再通过全连接网络和Softmax函数作为相应类别的预测。在这其中卷积层和池化层分别起到了特征提取和特征压缩的作用,将一个不定长的序列转化到一组固定大小的特征表示。 \parinterval 区别于传统图像上的卷积操作,在面向序列的卷积操作中,卷积核只在序列这一维度进行移动,用来捕捉连续的多个词之间的特征。需要注意的是,由于单词通常由一个实数向量表示(词嵌入),因此可以将词嵌入的维度看作是卷积操作中的通道数。图\ref{fig:11-10}就是一个基于序列卷积的文本分类模型,模型的输入是维度大小为$m\times O $的句子表示,$m$表示句子长度,$O$表示卷积核通道数,其值等于词嵌入维度,模型使用多个不同(对应图中不同的颜色)的卷积核来对序列进行特征提取,得到了多个不同的特征序列。然后使用池化层降低表示维度,得到了一组和序列长度无关的特征表示。最后模型基于这组压缩过的特征表示,使用全连接网络和Softmax函数进行类别预测。在这过程中卷积层和池化层分别起到了特征提取和特征压缩的作用,将一个不定长的序列转化为一组固定大小的特征表示。
%---------------------------------------------- %----------------------------------------------
% 图10. % 图10.
...@@ -244,7 +244,7 @@ ...@@ -244,7 +244,7 @@
\item {\small\bfnew{卷积层}}{\small\bfnew{门控线性单元}}(Gated Linear Units, GLU\index{Gated Linear Units, GLU}):黄色背景框是卷积模块,这里使用门控线性单元作为非线性函数,之前的研究工作\upcite{Dauphin2017LanguageMW} 表明这种非线性函数更适合于序列建模任务。图中为了简化,只展示了一层卷积,但在实际中为了更好地捕获句子信息,通常使用多层卷积的叠加。 \item {\small\bfnew{卷积层}}{\small\bfnew{门控线性单元}}(Gated Linear Units, GLU\index{Gated Linear Units, GLU}):黄色背景框是卷积模块,这里使用门控线性单元作为非线性函数,之前的研究工作\upcite{Dauphin2017LanguageMW} 表明这种非线性函数更适合于序列建模任务。图中为了简化,只展示了一层卷积,但在实际中为了更好地捕获句子信息,通常使用多层卷积的叠加。
\item {\small\bfnew{残差连接}}\index{残差连接}(Residual Connection)\index{Residual Connection}对于源语言端和目标语言端的卷积层网络之间,都存在一个从输入到输出的额外连接,即跳接\upcite{DBLP:journals/corr/HeZRS15}。该连接方式确保每个隐层输出都能包含输入序列中的更多信息,同时能够有效提高深层网络的信息传递效率(该部分在图\ref{fig:11-12}中没有显示,具体结构详见\ref{sec:11.2.3}节)。 \item {\small\bfnew{残差连接}}\index{残差连接}(Residual Connection)\index{Residual Connection}:源语言端和目标语言端的卷积层网络之间,都存在一个从输入到输出的额外连接,即跳接\upcite{DBLP:journals/corr/HeZRS15}。该连接方式确保每个隐层输出都能包含输入序列中的更多信息,同时能够有效提高深层网络的信息传递效率(该部分在图\ref{fig:11-12}中没有显示,具体结构详见\ref{sec:11.2.3}节)。
\item {\small\bfnew{多跳注意力机制}}\index{多跳注意力机制}(Multi-step Attention/Multi-hop Attention)\index{Multi-step Attention}\index{Multi-hop Attention}:蓝色框内部展示了基于多跳结构的注意力机制模块\upcite{Sukhbaatar2015EndToEndMN}。ConvS2S模型同样使用注意力机制来捕捉两个序列之间不同位置的对应关系。区别于之前的做法,多跳注意力在解码端每一个层都会执行注意力操作。下面将以此模型为例对基于卷积神经网络的机器翻译模型进行介绍。 \item {\small\bfnew{多跳注意力机制}}\index{多跳注意力机制}(Multi-step Attention/Multi-hop Attention)\index{Multi-step Attention}\index{Multi-hop Attention}:蓝色框内部展示了基于多跳结构的注意力机制模块\upcite{Sukhbaatar2015EndToEndMN}。ConvS2S模型同样使用注意力机制来捕捉两个序列之间不同位置的对应关系。区别于之前的做法,多跳注意力在解码端每一个层都会执行注意力操作。下面将以此模型为例对基于卷积神经网络的机器翻译模型进行介绍。
\end{itemize} \end{itemize}
...@@ -440,7 +440,7 @@ ...@@ -440,7 +440,7 @@
\label{eq:11-17} \label{eq:11-17}
\end{eqnarray} \end{eqnarray}
\parinterval Nesterov加速梯度下降法其实是利用了二阶导数的信息,因此可以做到“向前看”,加速收敛过程\upcite{Bengio2013AdvancesIO}。为了模型的稳定训练。ConvS2S模型也采用了一些网络正则化和参数初始化的策略,使得模型在前向计算和反向计算过程中方差尽可能保持一致。 \parinterval Nesterov加速梯度下降法利用了二阶导数的信息,可以做到“向前看”,加速收敛过程\upcite{Bengio2013AdvancesIO}。为了模型的稳定训练。ConvS2S模型也采用了一些网络正则化和参数初始化的策略,使得模型在前向计算和反向计算过程中方差尽可能保持一致。
\parinterval 此外,ConvS2S模型为了进一步提升训练效率及性能,还使用了小批量训练,即每次从样本中选择出一小部分数据进行训练。同时,ConvS2S模型中也使用了Dropout方法\upcite{JMLR:v15:srivastava14a}。除了在词嵌入层和解码器输出层应用Dropout外,ConvS2S模型还对卷积块的输入层应用了Dropout。 \parinterval 此外,ConvS2S模型为了进一步提升训练效率及性能,还使用了小批量训练,即每次从样本中选择出一小部分数据进行训练。同时,ConvS2S模型中也使用了Dropout方法\upcite{JMLR:v15:srivastava14a}。除了在词嵌入层和解码器输出层应用Dropout外,ConvS2S模型还对卷积块的输入层应用了Dropout。
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论