Commit e3770525 by 曹润柘

更新 chapter16.tex

parent a1059d34
......@@ -884,7 +884,7 @@
\item 如何更高效地利用已有双语数据或单语数据进行数据增强始终是一个热点问题。研究人员分别探索了源语言单语数据和目标语言单语数据的使用方法\upcite{DBLP:conf/emnlp/ZhangZ16,DBLP:conf/emnlp/WuWXQLL19,DBLP:conf/acl/XiaKAN19},以及如何对已有双语数据进行修改\upcite{DBLP:conf/emnlp/WangPDN18,DBLP:conf/acl/GaoZWXQCZL19}。经过数据增强得到的伪数据的质量时好时坏,如何提高伪数据的质量,以及更好地利用伪数据进行训练也是十分重要的问题\upcite{DBLP:conf/emnlp/FadaeeM18,DBLP:conf/nlpcc/XuLXLLXZ19,DBLP:conf/wmt/CaswellCG19,DBLP:journals/corr/abs200403672,DBLP:conf/emnlp/WangLWLS19}。此外,还有一些工作对数据增强技术进行了理论分析\upcite{DBLP:conf/emnlp/LiLHZZ19,DBLP:conf/acl/MarieRF20}
\vspace{0.5em}
\item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,BLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19}
\item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19}
\vspace{0.5em}
\item 多任务学习是多语言翻译的一种典型方法。通过共享编码器模块或是注意力模块来进行一对多\upcite{DBLP:conf/acl/DongWHYW15}或多对一\upcite{DBLP:journals/tacl/LeeCH17}或多对多\upcite{DBLP:conf/naacl/FiratCB16} 的学习,然而这些方法需要为每个翻译语言对设计单独的编码器和解码器,限制了其扩展性。为了解决以上问题,研究人员进一步探索了用于多语言翻译的单个机器翻译模型的方法,也就是本章提到的多语言单模型系统\upcite{DBLP:journals/corr/HaNW16,DBLP:journals/tacl/JohnsonSLKWCTVW17}。为了弥补多语言单模型系统中缺乏语言表示多样性的问题,可以重新组织多语言共享模块,设计特定任务相关模块\upcite{DBLP:conf/coling/BlackwoodBW18,DBLP:conf/wmt/SachanN18,DBLP:conf/wmt/LuKLBZS18,DBLP:conf/acl/WangZZZXZ19};也可以将多语言单词编码和语言聚类分离,用一种多语言词典编码框架共享词汇级别的信息,有助于语言间的泛化\upcite{DBLP:conf/iclr/WangPAN19};还可以将语言聚类为不同的组,并为每个聚类单独训练一个多语言模型\upcite{DBLP:conf/emnlp/TanCHXQL19}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论