fairseq_incremental_decoder.py 4.36 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from typing import Dict, Optional

from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.models import FairseqDecoder
from torch import Tensor


logger = logging.getLogger(__name__)


@with_incremental_state
class FairseqIncrementalDecoder(FairseqDecoder):
    """Base class for incremental decoders.

    Incremental decoding is a special mode at inference time where the Model
    only receives a single timestep of input corresponding to the previous
    output token (for teacher forcing) and must produce the next output
    *incrementally*. Thus the model must cache any long-term state that is
    needed about the sequence, e.g., hidden states, convolutional states, etc.

    Compared to the standard :class:`FairseqDecoder` interface, the incremental
    decoder interface allows :func:`forward` functions to take an extra keyword
    argument (*incremental_state*) that can be used to cache state across
    time-steps.

    The :class:`FairseqIncrementalDecoder` interface also defines the
    :func:`reorder_incremental_state` method, which is used during beam search
    to select and reorder the incremental state based on the selection of beams.

    To learn more about how incremental decoding works, refer to `this blog
    <http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_.
    """

    def __init__(self, dictionary):
        super().__init__(dictionary)

    def forward(
        self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
    ):
        """
        Args:
            prev_output_tokens (LongTensor): shifted output tokens of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (dict, optional): output from the encoder, used for
                encoder-side attention
            incremental_state (dict, optional): dictionary used for storing
                state during :ref:`Incremental decoding`

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        raise NotImplementedError

    def extract_features(
        self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
    ):
        """
        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        raise NotImplementedError

    def reorder_incremental_state(
        self,
        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
        new_order: Tensor,
    ):
        """Reorder incremental state.

        This will be called when the order of the input has changed from the
        previous time step. A typical use case is beam search, where the input
        order changes between time steps based on the selection of beams.
        """
        pass

    def reorder_incremental_state_scripting(
        self,
        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
        new_order: Tensor,
    ):
        """Main entry point for reordering the incremental state.

        Due to limitations in TorchScript, we call this function in
        :class:`fairseq.sequence_generator.SequenceGenerator` instead of
        calling :func:`reorder_incremental_state` directly.
        """
        for module in self.modules():
            if hasattr(module, "reorder_incremental_state"):
                result = module.reorder_incremental_state(incremental_state, new_order)
                if result is not None:
                    incremental_state = result

    def set_beam_size(self, beam_size):
        """Sets the beam size in the decoder and all children."""
        if getattr(self, "_beam_size", -1) != beam_size:
            seen = set()

            def apply_set_beam_size(module):
                if (
                    module != self
                    and hasattr(module, "set_beam_size")
                    and module not in seen
                ):
                    seen.add(module)
                    module.set_beam_size(beam_size)

            self.apply(apply_set_beam_size)
            self._beam_size = beam_size