preprocess_GLUE_tasks.sh 5.6 KB
Newer Older
xuchen committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#!/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


# raw glue data as downloaded by glue download script (https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
if [[ $# -ne 2 ]]; then
  echo "Run as following:"
  echo "./examples/roberta/preprocess_GLUE_tasks.sh <glud_data_folder> <task_name>"
  exit 1
fi

GLUE_DATA_FOLDER=$1

# download bpe encoder.json, vocabulary and fairseq dictionary
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'

TASKS=$2 # QQP

if [ "$TASKS" = "ALL" ]
then
  TASKS="QQP MNLI QNLI MRPC RTE STS-B SST-2 CoLA"
fi

for TASK in $TASKS
do
  echo "Preprocessing $TASK"

  TASK_DATA_FOLDER="$GLUE_DATA_FOLDER/$TASK"
  echo "Raw data as downloaded from glue website: $TASK_DATA_FOLDER"

  SPLITS="train dev test"
  INPUT_COUNT=2
  if [ "$TASK" = "QQP" ]
  then
    INPUT_COLUMNS=( 4 5 )
    TEST_INPUT_COLUMNS=( 2 3 )
    LABEL_COLUMN=6
  elif [ "$TASK" = "MNLI" ]
  then
    SPLITS="train dev_matched dev_mismatched test_matched test_mismatched"
    INPUT_COLUMNS=( 9 10 )
    TEST_INPUT_COLUMNS=( 9 10 )
    DEV_LABEL_COLUMN=16
    LABEL_COLUMN=12
  elif [ "$TASK" = "QNLI" ]
  then
    INPUT_COLUMNS=( 2 3 )
    TEST_INPUT_COLUMNS=( 2 3 )
    LABEL_COLUMN=4
  elif [ "$TASK" = "MRPC" ]
  then
    INPUT_COLUMNS=( 4 5 )
    TEST_INPUT_COLUMNS=( 4 5 )
    LABEL_COLUMN=1
  elif [ "$TASK" = "RTE" ]
  then
    INPUT_COLUMNS=( 2 3 )
    TEST_INPUT_COLUMNS=( 2 3 )
    LABEL_COLUMN=4
  elif [ "$TASK" = "STS-B" ]
  then
    INPUT_COLUMNS=( 8 9 )
    TEST_INPUT_COLUMNS=( 8 9 )
    LABEL_COLUMN=10
  # Following are single sentence tasks.
  elif [ "$TASK" = "SST-2" ]
  then
    INPUT_COLUMNS=( 1 )
    TEST_INPUT_COLUMNS=( 2 )
    LABEL_COLUMN=2
    INPUT_COUNT=1
  elif [ "$TASK" = "CoLA" ]
  then
    INPUT_COLUMNS=( 4 )
    TEST_INPUT_COLUMNS=( 2 )
    LABEL_COLUMN=2
    INPUT_COUNT=1
  fi

  # Strip out header and filter lines that don't have expected number of fields.
  rm -rf "$TASK_DATA_FOLDER/processed"
  mkdir -p "$TASK_DATA_FOLDER/processed"
  for SPLIT in $SPLITS
  do
    # CoLA train and dev doesn't have header.
    if [[ ( "$TASK" = "CoLA") && ( "$SPLIT" != "test" ) ]]
    then
      cp "$TASK_DATA_FOLDER/$SPLIT.tsv" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
    else
      tail -n +2 "$TASK_DATA_FOLDER/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
    fi

    # Remove unformatted lines from train and dev files for QQP dataset.
    if [[ ( "$TASK" = "QQP") && ( "$SPLIT" != "test" ) ]]
    then
      awk -F '\t' -v NUM_FIELDS=6 'NF==NUM_FIELDS{print}{}' "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
    else
      cp "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
    fi
    rm "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
  done

  # Split into input0, input1 and label
  for SPLIT in $SPLITS
  do
    for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
    do
      if [[ "$SPLIT" != test* ]]
      then
        COLUMN_NUMBER=${INPUT_COLUMNS[$INPUT_TYPE]}
      else
        COLUMN_NUMBER=${TEST_INPUT_COLUMNS[$INPUT_TYPE]}
      fi
      cut -f"$COLUMN_NUMBER" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.raw.input$INPUT_TYPE";
    done

    if [[ "$SPLIT" != test* ]]
    then
      if [ "$TASK" = "MNLI" ] && [ "$SPLIT" != "train" ]
      then
        cut -f"$DEV_LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv"  > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
      else
        cut -f"$LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
      fi
    fi

    # BPE encode.
    for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
    do
      LANG="input$INPUT_TYPE"
      echo "BPE encoding $SPLIT/$LANG"
      python -m examples.roberta.multiprocessing_bpe_encoder \
      --encoder-json encoder.json \
      --vocab-bpe vocab.bpe \
      --inputs "$TASK_DATA_FOLDER/processed/$SPLIT.raw.$LANG" \
      --outputs "$TASK_DATA_FOLDER/processed/$SPLIT.$LANG" \
      --workers 60 \
      --keep-empty;
    done
  done

  # Remove output directory.
  rm -rf "$TASK-bin"

  DEVPREF="$TASK_DATA_FOLDER/processed/dev.LANG"
  TESTPREF="$TASK_DATA_FOLDER/processed/test.LANG"
  if [ "$TASK" = "MNLI" ]
  then
    DEVPREF="$TASK_DATA_FOLDER/processed/dev_matched.LANG,$TASK_DATA_FOLDER/processed/dev_mismatched.LANG"
    TESTPREF="$TASK_DATA_FOLDER/processed/test_matched.LANG,$TASK_DATA_FOLDER/processed/test_mismatched.LANG"
  fi

  # Run fairseq preprocessing:
  for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
  do
    LANG="input$INPUT_TYPE"
    fairseq-preprocess \
      --only-source \
      --trainpref "$TASK_DATA_FOLDER/processed/train.$LANG" \
      --validpref "${DEVPREF//LANG/$LANG}" \
      --testpref "${TESTPREF//LANG/$LANG}" \
      --destdir "$TASK-bin/$LANG" \
      --workers 60 \
      --srcdict dict.txt;
  done
  if [[ "$TASK" !=  "STS-B" ]]
  then
    fairseq-preprocess \
      --only-source \
      --trainpref "$TASK_DATA_FOLDER/processed/train.label" \
      --validpref "${DEVPREF//LANG/label}" \
      --destdir "$TASK-bin/label" \
      --workers 60;
  else
    # For STS-B output range is converted to be between: [0.0, 1.0]
    mkdir -p "$TASK-bin/label"
    awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/train.label" > "$TASK-bin/label/train.label"
    awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/dev.label" > "$TASK-bin/label/valid.label"
  fi
done