run.sh 10.7 KB
Newer Older
1 2
#! /bin/bash

3
# Processing IWSLT 2022 Datasets
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

# Copyright 2021 Natural Language Processing Laboratory 
# Xu Chen (xuchenneu@163.com)

# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
#set -u
set -o pipefail
export PYTHONIOENCODING=UTF-8

eval=1
time=$(date "+%m%d")

stage=0
stop_stage=0

######## hardware ########
# devices
device=()
gpu_num=8
update_freq=1

root_dir=~/st
code_dir=${root_dir}/Fairseq-S2T
pwd_dir=$PWD

# dataset
src_lang=en
33
tgt_lang=zh
34 35
lang=${src_lang}-${tgt_lang}

36
dataset=iwslt2022
37
task=translation
38 39 40 41 42 43
src_vocab_type=unigram
tgt_vocab_type=unigram
src_vocab_size=32000
tgt_vocab_size=32000
share_dict=0
lcrm=1
44 45 46
tokenizer=0

use_specific_dict=1
xuchen committed
47 48 49 50
specific_prefix=unified
specific_dir=${root_dir}/data/${dataset}/vocab
src_vocab_prefix=spm_en
tgt_vocab_prefix=spm_zh
51 52 53

org_data_dir=${root_dir}/data/${dataset}
data_dir=${root_dir}/data/${dataset}/mt
54
train_subset=train_mustc_enzh
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
valid_subset=dev
trans_subset=tst-COMMON
test_subset=test

# exp
exp_prefix=${time}
extra_tag=
extra_parameter=
exp_tag=baseline
exp_name=

# config
train_config=base_s

# training setting
fp16=1
max_tokens=4096
step_valid=0
bleu_valid=0

# decoding setting
sacrebleu=1
dec_model=checkpoint_best.pt
n_average=10
beam_size=5
len_penalty=1.0

if [[ ${use_specific_dict} -eq 1 ]]; then
    exp_prefix=${exp_prefix}_${specific_prefix}
    data_dir=${data_dir}/${specific_prefix}
else
86 87 88
    if [[ "${tgt_vocab_type}" == "char" ]]; then
        vocab_name=char
        exp_prefix=${exp_prefix}_char
89
    else
90 91 92 93 94 95 96 97 98
        if [[ ${src_vocab_size} -ne ${tgt_vocab_size} || "${src_vocab_type}" -ne "${tgt_vocab_type}" ]]; then
            src_vocab_name=${src_vocab_type}${src_vocab_size}
            tgt_vocab_name=${tgt_vocab_type}${tgt_vocab_size}
            vocab_name=${src_vocab_name}_${tgt_vocab_name}
        else
            vocab_name=${tgt_vocab_type}${tgt_vocab_size}
            src_vocab_name=${vocab_name}
            tgt_vocab_name=${vocab_name}
        fi
99 100
    fi
    data_dir=${data_dir}/${vocab_name}
101 102
    src_vocab_prefix=spm_${src_vocab_name}_${src_lang}
    tgt_vocab_prefix=spm_${tgt_vocab_name}_${tgt_lang}
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if [[ $share_dict -eq 1 ]]; then
        data_dir=${data_dir}_share
        src_vocab_prefix=spm_${vocab_name}_share
        tgt_vocab_prefix=spm_${vocab_name}_share
    fi
fi
if [[ ${lcrm} -eq 1 ]]; then
    data_dir=${data_dir}_lcrm
    exp_prefix=${exp_prefix}_lcrm
fi
if [[ ${tokenizer} -eq 1 ]]; then
    train_subset=${train_subset}.tok
    valid_subset=${valid_subset}.tok
    trans_subset=${trans_subset}.tok
    data_dir=${data_dir}_tok
    exp_prefix=${exp_prefix}_tok
fi

. ./local/parse_options.sh || exit 1;

# full path
if [[ -z ${exp_name} ]]; then
    config_string=${train_config//,/_}
    exp_name=${exp_prefix}_${config_string}_${exp_tag}
    if [[ -n ${extra_tag} ]]; then
        exp_name=${exp_name}_${extra_tag}
    fi
fi
model_dir=${root_dir}/checkpoints/${dataset}/mt/${exp_name}

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
    echo "stage -1: Data Download"
    # pass
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
    ### Task dependent. You have to make data the following preparation part by yourself.
    echo "stage 0: MT Data Preparation"
    if [[ ! -e ${data_dir} ]]; then
        mkdir -p ${data_dir}
    fi
144 145 146
    if [[ ! -e ${data_dir}/data ]]; then
        mkdir -p ${data_dir}/data
    fi
147 148 149 150 151 152 153 154 155

    if [[ ! -f ${data_dir}/${src_vocab_prefix}.txt || ! -f ${data_dir}/${tgt_vocab_prefix}.txt ]]; then
        if [[ ${use_specific_dict} -eq 0 ]]; then
            cmd="python ${code_dir}/examples/speech_to_text/prep_mt_data.py
                --data-root ${org_data_dir}
                --output-root ${data_dir}
                --splits ${train_subset},${valid_subset},${trans_subset}
                --src-lang ${src_lang}
                --tgt-lang ${tgt_lang}
156 157 158 159
                --src-vocab-type ${src_vocab_type}
                --tgt-vocab-type ${tgt_vocab_type}
                --src-vocab-size ${src_vocab_size}
                --tgt-vocab-size ${tgt_vocab_size}"
160 161 162 163
        else
            cp -r ${specific_dir}/${src_vocab_prefix}.* ${data_dir}
            cp ${specific_dir}/${tgt_vocab_prefix}.* ${data_dir}

164 165 166 167 168 169 170 171 172 173 174 175
            cmd="python ${code_dir}/examples/speech_to_text/prep_mt_data.py
                --data-root ${org_data_dir}
                --output-root ${data_dir}
                --splits ${train_subset},${valid_subset},${trans_subset}
                --src-lang ${src_lang}
                --tgt-lang ${tgt_lang}
                --src-vocab-prefix ${src_vocab_prefix}
                --tgt-vocab-prefix ${tgt_vocab_prefix}"
        fi
        if [[ $share_dict -eq 1 ]]; then
            cmd="$cmd
                --share"
176 177
        fi
        if [[ ${lcrm} -eq 1 ]]; then
178 179 180
            cmd="$cmd
                --lowercase-src
                --rm-punc-src"
181 182 183
        fi
        echo -e "\033[34mRun command: \n${cmd} \033[0m"
        [[ $eval -eq 1 ]] && eval ${cmd}
184
    fi
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    cmd="python ${code_dir}/fairseq_cli/preprocess.py
        --source-lang ${src_lang} --target-lang ${tgt_lang}
        --trainpref ${data_dir}/data/${train_subset}
        --validpref ${data_dir}/data/${valid_subset}
        --testpref ${data_dir}/data/${trans_subset}
        --destdir ${data_dir}/data-bin
        --srcdict ${data_dir}/${src_vocab_prefix}.txt
        --tgtdict ${data_dir}/${tgt_vocab_prefix}.txt
        --workers 64"

    echo -e "\033[34mRun command: \n${cmd} \033[0m"
    [[ $eval -eq 1 ]] && eval ${cmd}
fi

data_dir=${data_dir}/data-bin

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    echo "stage 1: MT Network Training"
    [[ ! -d ${data_dir} ]] && echo "The data dir ${data_dir} is not existing!" && exit 1;

    if [[ -z ${device} || ${#device[@]} -eq 0 ]]; then
		if [[ ${gpu_num} -eq 0 ]]; then
			device=""
		else
        	source ./local/utils.sh
        	device=$(get_devices $gpu_num 0)
		fi
    fi

    echo -e "dev=${device} data=${data_dir} model=${model_dir}"

    if [[ ! -d ${model_dir} ]]; then
        mkdir -p ${model_dir}
    else
        echo "${model_dir} exists."
    fi

    cp ${BASH_SOURCE[0]} ${model_dir}
    cp ${PWD}/train.sh ${model_dir}

    extra_parameter="${extra_parameter}
        --train-config ${pwd_dir}/conf/basis.yaml"
    cp ${pwd_dir}/conf/basis.yaml ${model_dir}
    config_list="${train_config//,/ }"
    idx=1
    for config in ${config_list[@]}
    do
        config_path=${pwd_dir}/conf/${config}.yaml
        if [[ ! -f ${config_path} ]]; then
            echo "No config file ${config_path}"
            exit
        fi
        cp ${config_path} ${model_dir}

        extra_parameter="${extra_parameter}
        --train-config${idx} ${config_path}"
        idx=$((idx + 1))
    done

    cmd="python3 -u ${code_dir}/fairseq_cli/train.py
        ${data_dir}
        --source-lang ${src_lang}
        --target-lang ${tgt_lang}
        --task ${task}
        --max-tokens ${max_tokens}
        --skip-invalid-size-inputs-valid-test
        --update-freq ${update_freq}
        --log-interval 100
        --save-dir ${model_dir}
        --tensorboard-logdir ${model_dir}"

	if [[ -n ${extra_parameter} ]]; then
        cmd="${cmd}
        ${extra_parameter}"
    fi
	if [[ ${gpu_num} -gt 0 ]]; then
		cmd="${cmd}
        --distributed-world-size $gpu_num
        --ddp-backend no_c10d"
	fi
    if [[ $fp16 -eq 1 ]]; then
        cmd="${cmd}
        --fp16"
    fi
    if [[ $step_valid -eq 1 ]]; then
        validate_interval=1
        save_interval=1
        no_epoch_checkpoints=0
        save_interval_updates=500
        keep_interval_updates=10
    fi
    if [[ $bleu_valid -eq 1 ]]; then
        cmd="$cmd
        --eval-bleu
        --eval-bleu-args '{\"beam\": 1}'
        --eval-tokenized-bleu
        --eval-bleu-remove-bpe
        --best-checkpoint-metric bleu
        --maximize-best-checkpoint-metric"
    fi
    if [[ -n $no_epoch_checkpoints && $no_epoch_checkpoints -eq 1 ]]; then
        cmd="$cmd
        --no-epoch-checkpoints"
    fi
    if [[ -n $validate_interval ]]; then
        cmd="${cmd}
        --validate-interval $validate_interval "
    fi
    if [[ -n $save_interval ]]; then
        cmd="${cmd}
        --save-interval $save_interval "
    fi
    if [[ -n $save_interval_updates ]]; then
        cmd="${cmd}
        --save-interval-updates $save_interval_updates"
        if [[ -n $keep_interval_updates ]]; then
        cmd="${cmd}
        --keep-interval-updates $keep_interval_updates"
        fi
    fi

    echo -e "\033[34mRun command: \n${cmd} \033[0m"

    # save info
    log=./history.log
    echo "${time} | ${device} | ${data_dir} | ${exp_name} | ${model_dir} " >> $log
    tail -n 50 ${log} > tmp.log
    mv tmp.log $log
    export CUDA_VISIBLE_DEVICES=${device}

316 317
    log=${model_dir}/train.log
    cmd="nohup ${cmd} >> ${log} 2>&1 &"
318 319 320
    if [[ $eval -eq 1 ]]; then
		eval $cmd
		sleep 2s
321
		tail -n "$(wc -l ${log} | awk '{print $1+1}')" -f ${log}
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	fi
fi
wait

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
    echo "stage 2: MT Decoding"
    if [[ ${n_average} -ne 1 ]]; then
        # Average models
		dec_model=avg_${n_average}_checkpoint.pt

        if [[ ! -f ${model_dir}/${dec_model} ]]; then
            cmd="python ${code_dir}/scripts/average_checkpoints.py
            --inputs ${model_dir}
            --num-best-checkpoints ${n_average}
            --output ${model_dir}/${dec_model}"
            echo -e "\033[34mRun command: \n${cmd} \033[0m"
            [[ $eval -eq 1 ]] && eval $cmd
        fi
	else
		dec_model=${dec_model}
	fi

    if [[ -z ${device} || ${#device[@]} -eq 0 ]]; then
		if [[ ${gpu_num} -eq 0 ]]; then
			device=""
		else
        	source ./local/utils.sh
        	device=$(get_devices $gpu_num 0)
		fi
    fi
    export CUDA_VISIBLE_DEVICES=${device}

	result_file=${model_dir}/decode_result
	[[ -f ${result_file} ]] && rm ${result_file}

    test_subset=(${test_subset//,/ })
	for subset in ${test_subset[@]}; do
  		cmd="python ${code_dir}/fairseq_cli/generate.py
        ${data_dir}
        --source-lang ${src_lang}
        --target-lang ${tgt_lang}
        --gen-subset ${subset}
        --task ${task}
        --path ${model_dir}/${dec_model}
        --results-path ${model_dir}
        --max-tokens ${max_tokens}
        --beam ${beam_size}
        --lenpen ${len_penalty}
        --post-process sentencepiece"

        if [[ ${sacrebleu} -eq 1 ]]; then
            cmd="${cmd}
        --scoring sacrebleu"
            if [[ ${tokenizer} -eq 1 ]]; then
                cmd="${cmd}
        --tokenizer moses
        --moses-source-lang ${src_lang}
        --moses-target-lang ${tgt_lang}"
            fi
        fi

    	echo -e "\033[34mRun command: \n${cmd} \033[0m"

        if [[ $eval -eq 1 ]]; then
    	    eval $cmd
    	    tail -n 1 ${model_dir}/generate-${subset}.txt >> ${result_file}
        fi
	done
    cat ${result_file}
fi