save_encoder.py 7.25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""

import numpy as np
import torch
from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
from fairseq.sequence_generator import EnsembleModel


def get_avg_pool(
    models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False
):
    model = EnsembleModel(models)

    # model.forward normally channels prev_output_tokens into the decoder
    # separately, but SequenceGenerator directly calls model.encoder
    encoder_input = {
        k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
    }

    # compute the encoder output for each beam
    encoder_outs = model.forward_encoder(encoder_input)
    np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32)
    encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype(
        np.float32
    )
    encoder_mask = np.expand_dims(encoder_mask.T, axis=2)
    if has_langtok:
        encoder_mask = encoder_mask[1:, :, :]
        np_encoder_outs = np_encoder_outs[1, :, :]
    masked_encoder_outs = encoder_mask * np_encoder_outs
    avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0)
    return avg_pool


def main(args):
    assert args.path is not None, "--path required for generation!"
    assert (
        not args.sampling or args.nbest == args.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        args.replace_unk is None or args.raw_text
    ), "--replace-unk requires a raw text dataset (--raw-text)"

    args.beam = 1
    utils.import_user_module(args)

    if args.max_tokens is None:
        args.max_tokens = 12000
    print(args)
    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print("| loading model(s) from {}".format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(":"),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    num_sentences = 0
    source_sentences = []
    shard_id = 0
    all_avg_pool = None
    encoder_has_langtok = (
        hasattr(task.args, "encoder_langtok")
        and task.args.encoder_langtok is not None
        and hasattr(task.args, "lang_tok_replacing_bos_eos")
        and not task.args.lang_tok_replacing_bos_eos
    )
    with progress_bar.build_progress_bar(args, itr) as t:
        for sample in t:
            if sample is None:
                print("Skipping None")
                continue
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if "net_input" not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample["target"][:, : args.prefix_size]

            with torch.no_grad():
                avg_pool = get_avg_pool(
                    models,
                    sample,
                    prefix_tokens,
                    src_dict,
                    args.post_process,
                    has_langtok=encoder_has_langtok,
                )
                if all_avg_pool is not None:
                    all_avg_pool = np.concatenate((all_avg_pool, avg_pool))
                else:
                    all_avg_pool = avg_pool

            if not isinstance(sample["id"], list):
                sample_ids = sample["id"].tolist()
            else:
                sample_ids = sample["id"]
            for i, sample_id in enumerate(sample_ids):
                # Remove padding
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
                )

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(args.gen_subset).src.get_original_text(
                        sample_id
                    )
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.post_process)
                    else:
                        src_str = ""

                if not args.quiet:
                    if src_dict is not None:
                        print("S-{}\t{}".format(sample_id, src_str))

                source_sentences.append(f"{sample_id}\t{src_str}")

            num_sentences += sample["nsentences"]
            if all_avg_pool.shape[0] >= 1000000:
                with open(
                    f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}",
                    "w",
                ) as avg_pool_file:
                    all_avg_pool.tofile(avg_pool_file)
                with open(
                    f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}",
                    "w",
                ) as sentence_file:
                    sentence_file.writelines(f"{line}\n" for line in source_sentences)
                all_avg_pool = None
                source_sentences = []
                shard_id += 1

    if all_avg_pool is not None:
        with open(
            f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w"
        ) as avg_pool_file:
            all_avg_pool.tofile(avg_pool_file)
        with open(
            f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w"
        ) as sentence_file:
            sentence_file.writelines(f"{line}\n" for line in source_sentences)
    return None


def cli_main():
    parser = options.get_generation_parser()
    parser.add_argument(
        "--encoder-save-dir",
        default="",
        type=str,
        metavar="N",
        help="directory to save encoder outputs",
    )
    args = options.parse_args_and_arch(parser)
    main(args)


if __name__ == "__main__":
    cli_main()