layer_history.py 9.99 KB
Newer Older
1 2
import torch
import torch.nn as nn
3
from fairseq.modules.layer_norm import LayerNorm
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
import queue
import numpy as np


def CreateLayerHistory(args, is_encoder):
    history_type = args.encoder_history_type if is_encoder else args.decoder_history_type
    if history_type is None:
        return None
    elif history_type == "residual":
        return ResidualLayerHistory(args, is_encoder)
    elif history_type == "dense":
        return DenseLayerHistory(args, is_encoder)
    elif history_type == "learnable_dense":
        return LearnableDenseLayerHistory(args, is_encoder)
    elif history_type == "learnable_dense_mask":
        return LearnableDenseMaskLayerHistory(args, is_encoder)
    elif history_type == "learnable_dense_nonorm":
        return LearnableDenseNoNormLayerHistory(args, is_encoder)
    elif history_type == "gru":
        return GruLayerHistory(args, is_encoder)
    else:
        raise ValueError


class BaseLayerHistory(nn.Module):

    def __init__(self, args, is_encoder):
        super(BaseLayerHistory, self).__init__()
        self.is_encoder = is_encoder
        self.normalize_before = args.encoder_normalize_before if is_encoder else args.decoder_normalize_before

        # the first layer (aka. embedding layer) does not have layer normalization
        layers = args.encoder_layers if is_encoder else args.decoder_layers
        dim = args.encoder_embed_dim if is_encoder else args.decoder_embed_dim
        self.layer_norms = nn.ModuleList(LayerNorm(dim) for _ in range(layers))

    def add(self, layer):
        raise NotImplemented

    def pop(self):
        raise NotImplemented

    def clean(self):
        raise NotImplemented


class ResidualLayerHistory(BaseLayerHistory):
    """
    x_n = x_{n-1} + y_{n-1}
    """

    def __init__(self, args, is_encoder):
        super(ResidualLayerHistory, self).__init__(args, is_encoder)
        self.count = 0
        self.x = None
        self.y = None

    def add(self, layer):
        if self.x is None:
            self.x = layer
            self.count += 1
            return
        self.count += 1
        if self.normalize_before:
            self.y = self.layer_norms[self.count - 2](layer)
        else:
            self.y = layer

    def pop(self):
        assert self.x is not None
        if self.y is None:
            return self.x
        ret = self.x + self.y
        if not self.normalize_before:
            ret = self.layer_norms[self.count - 2](ret)
        self.x = ret
        return ret

    def clean(self):
        self.x = None
        self.y = None
        self.count = 0


class DenseLayerHistory(BaseLayerHistory):
    """
    x_n = (x_1 + y_1 + y_2 + ... y_{n-1}) / n
    """

    def __init__(self, args, is_encoder):
        super(DenseLayerHistory, self).__init__(args, is_encoder)
        self.sum = None
        self.count = 0
        self.individuals = None  # store past individual value, used for windows_size > 0

        self.integration_type = getattr(args, 'encoder_integration_type', 'avg') if is_encoder else \
            getattr(args, 'decoder_integration_type', 'avg')
        # windows = 1 means not use residual connection
        self.windows_size = getattr(args, 'encoder_windows_size', -1) if is_encoder else \
            getattr(args, 'decoder_windows_size', -1)
        if self.windows_size > 0:
            assert self.windows_size <= (args.encoder_layers + 1) if is_encoder else (args.decoder_layers + 1)
            self.individuals = queue.Queue(self.windows_size)

    def add(self, layer):
        self.count += 1

        # first layer
        if self.sum is None:
            self.sum = layer
            if self.individuals is not None:
                self.individuals.put(layer)
            return

        # following layer
        if self.normalize_before:
            layer = self.layer_norms[self.count - 2](layer)

        self.sum = self.sum + layer
        if self.windows_size != -1 and self.count > self.windows_size:
            self.sum = self.sum - self.individuals.get()

        if self.individuals is not None:
            self.individuals.put(layer)

    def pop(self):
        assert self.sum is not None
        if self.integration_type == 'sum':
            ret = self.sum
        else:
            if self.windows_size == -1:
                ret = self.sum / self.count
            else:
                ret = self.sum / min(self.count, self.windows_size)
        if self.count == 1 or self.normalize_before:
            return ret
        return self.layer_norms[self.count - 2](ret)

    def clean(self):
        self.sum = None
        self.count = 0
        if self.individuals is not None:
            self.individuals.queue.clear()


class LearnableDenseLayerHistory(BaseLayerHistory):
    """
    x_n = (x_1 + y_1 + y_2 + ... y_{n-1}) / n
    """

    def __init__(self, args, is_encoder):
        super(LearnableDenseLayerHistory, self).__init__(args, is_encoder)
        self.sum = None
        self.count = 0
        self.layer_num = 1 + (args.encoder_layers if is_encoder else args.decoder_layers)
        self.weight = nn.Parameter(torch.Tensor(self.layer_num, self.layer_num).fill_(1.0).tril())
        self.weight.data = self.weight.data / self.weight.data.sum(1, keepdim=True)

    def extra_repr(self):
        return 'n_layers={layer_num}, '.format(**self.__dict__)

    def add(self, layer):
        self.count += 1

        # first layer
        if self.sum is None:
            self.sum = layer
            self.layers.append(layer)
            return

        # following layer
        if self.normalize_before:
            layer = self.layer_norms[self.count - 2](layer)

        self.layers.append(layer)

    def pop(self):
        assert len(self.layers) > 0
        ret = (torch.stack(self.layers, 0) * self.weight[self.count - 1, : self.count].view(-1, 1, 1, 1)).sum(0)
        if self.count == 1 or self.normalize_before:
            return ret
        return self.layer_norms[self.count - 2](ret)

    def clean(self):
        self.sum = None
        self.count = 0
        self.layers = []

    def get_loss(self):
        return (0.5 * (self.weight.sum(1) - 1.0) ** 2).mean()


class LearnableDenseMaskLayerHistory(BaseLayerHistory):
    """
    x_n = (x_1 + y_1 + y_2 + ... y_{n-1}) / n
    """

    def __init__(self, args, is_encoder):
        super(LearnableDenseMaskLayerHistory, self).__init__(args, is_encoder)
        self.sum = None
        self.count = 0
        self.layer_num = 1 + (args.encoder_layers if is_encoder else args.decoder_layers)
        if is_encoder:
            self.weight_mask = np.loadtxt("encoder_mask.txt", dtype=float, delimiter=' ')
        else:
            self.weight_mask = np.loadtxt("decoder_mask.txt", dtype=float, delimiter=' ')
        self.weight = nn.Parameter(torch.Tensor(self.layer_num, self.layer_num).fill_(1.0).tril())
        self.weight.data = self.weight.data / self.weight.data.sum(1, keepdim=True)

    def add(self, layer):
        self.count += 1

        # first layer
        if self.sum is None:
            self.sum = layer
            self.layers.append(layer)
            return

        # following layer
        if self.normalize_before:
            layer = self.layer_norms[self.count - 2](layer)

        self.layers.append(layer)

    def pop(self):
        assert len(self.layers) > 0
        ret = (torch.stack(self.layers, 0) * self.weight[self.count - 1, : self.count].view(-1, 1, 1, 1)).sum(0)
        if self.count == 1 or self.normalize_before:
            return ret
        return self.layer_norms[self.count - 2](ret)

    def clean(self):
        self.sum = None
        self.count = 0
        self.layers = []

    def get_loss(self):
        return (0.5 * (self.weight.sum(1) - 1.0) ** 2).mean()


class LearnableDenseNoNormLayerHistory(BaseLayerHistory):
    """
    x_n = (x_1 + y_1 + y_2 + ... y_{n-1}) / n
    """

    def __init__(self, args, is_encoder):
        super(LearnableDenseNoNormLayerHistory, self).__init__(args, is_encoder)
        self.sum = None
        self.count = 0
        self.layer_num = 1 + (args.encoder_layers if is_encoder else args.decoder_layers)
        self.weight = nn.Parameter(torch.Tensor(self.layer_num, self.layer_num).fill_(1.0).tril())
        self.weight.data = self.weight.data / self.weight.data.sum(1, keepdim=True)
        self.layers = []
        self.layer_norms = None

    def add(self, layer):
        self.count += 1

        # first layer
        if self.sum is None:
            self.sum = layer
            self.layers.append(layer)
            return

        self.layers.append(layer)

    def pop(self):
        assert len(self.layers) > 0

        ret = (torch.stack(self.layers, 0) * self.weight[self.count - 1, : self.count].view(-1, 1, 1, 1)).sum(0)
        if self.count == 1 or self.normalize_before:
            return ret
        return self.layer_norms[self.count - 2](ret)

    def clean(self):
        self.sum = None
        self.count = 0
        self.layers = []


class GruLayerHistory(BaseLayerHistory):
    """
    x_n = (x_1 + y_1 + y_2 + ... y_{n-1}) / n
    """

    def __init__(self, args, is_encoder):
        super(GruLayerHistory, self).__init__(args, is_encoder)
        self.count = 0
        self.gru = nn.GRUCell(args.encoder_embed_dim, args.encoder_embed_dim)
        self.gru_cells = []
        self.layer_norms = nn.ModuleList(LayerNorm(args.encoder_embed_dim) for _ in range(args.decoder_layers + 1))
        self.decoder_layers = args.decoder_layers

    def compute_gru(self, layer_output):
        if len(self.gru_cells) == 0:
            self.gru_cells.append(layer_output)
            return self.layer_norms[self.count](layer_output)

        self.count += 1
        prev_h = self.gru_cells[-1]
        L, B, H = layer_output.size()
        layer_output = torch.reshape(layer_output, (-1, H))
        prev_h = torch.reshape(prev_h, (-1, H))
        h = self.gru(layer_output, prev_h).view(L, B, H)
        self.gru_cells.append(h)
        if self.count != self.decoder_layers:
            return self.layer_norms[self.count](h)
        else:
            return None

    def clean(self):
        self.gru_cells = []
        self.count = 0