run.sh 8.92 KB
Newer Older
xuchen committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
#! /bin/bash

# Processing MuST-C Datasets

# Copyright 2021 Natural Language Processing Laboratory 
# Xu Chen (xuchenneu@163.com)

# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
#set -u
set -o pipefail
export PYTHONIOENCODING=UTF-8

eval=1
time=$(date "+%m%d_%H%M")

stage=0
stop_stage=0

######## hardware ########
# devices
#device=()
gpu_num=8
update_freq=1

root_dir=~/st/Fairseq-S2T
pwd_dir=$PWD

# dataset
src_lang=en
tgt_lang=de
lang=${src_lang}-${tgt_lang}

dataset=mustc-v2
task=speech_to_text
vocab_type=unigram
asr_vocab_size=5000
vocab_size=10000
share_dict=1
speed_perturb=0
lcrm=1
tokenizer=0

use_specific_dict=0
specific_prefix=valid
specific_dir=/home/xuchen/st/data/mustc/st_lcrm/en-de
asr_vocab_prefix=spm_unigram10000_st_share
st_vocab_prefix=spm_unigram10000_st_share

org_data_dir=/media/data/${dataset}
data_dir=~/st/data/${dataset}/st
test_subset=tst-COMMON

# exp
exp_prefix=${time}
extra_tag=
extra_parameter=
exp_tag=baseline
exp_name=

# config
train_config=train_ctc.yaml

# training setting
fp16=1
max_tokens=40000
step_valid=0
bleu_valid=0

# decoding setting
dec_model=checkpoint_best.pt
n_average=10
beam_size=5
len_penalty=1.0

if [[ ${share_dict} -eq 1 ]]; then
	data_config=config_st_share.yaml
else
	data_config=config_st.yaml
fi
if [[ ${speed_perturb} -eq 1 ]]; then
    data_dir=${data_dir}_sp
    exp_prefix=${exp_prefix}_sp
fi
if [[ ${lcrm} -eq 1 ]]; then
    data_dir=${data_dir}_lcrm
    exp_prefix=${exp_prefix}_lcrm
fi
if [[ ${use_specific_dict} -eq 1 ]]; then
    data_dir=${data_dir}_${specific_prefix}
    exp_prefix=${exp_prefix}_${specific_prefix}
fi
if [[ ${tokenizer} -eq 1 ]]; then
    data_dir=${data_dir}_tok
    exp_prefix=${exp_prefix}_tok
fi

. ./local/parse_options.sh || exit 1;

# full path
train_config=$pwd_dir/conf/${train_config}
if [[ -z ${exp_name} ]]; then
    exp_name=${exp_prefix}_$(basename ${train_config%.*})_${exp_tag}
    if [[ -n ${extra_tag} ]]; then
        exp_name=${exp_name}_${extra_tag}
    fi
fi
model_dir=$root_dir/../checkpoints/$dataset/st/${exp_name}

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
    echo "stage -1: Data Download"
    # pass
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
    ### Task dependent. You have to make data the following preparation part by yourself.
    ### But you can utilize Kaldi recipes in most cases
    echo "stage 0: ASR Data Preparation"
    if [[ ! -e ${data_dir}/${lang} ]]; then
        mkdir -p ${data_dir}/${lang}
    fi
    source ~/tools/audio/bin/activate

    cmd="python ${root_dir}/examples/speech_to_text/prep_asr_data.py
        --data-root ${org_data_dir}
        --output-root ${data_dir}
        --task asr
        --vocab-type ${vocab_type}
        --vocab-size ${asr_vocab_size}"
    if [[ ${speed_perturb} -eq 1 ]]; then
        cmd="$cmd
        --speed-perturb"
    fi
    echo -e "\033[34mRun command: \n${cmd} \033[0m"
    [[ $eval -eq 1 && ${share_dict} -ne 1 && ${use_specific_dict} -ne 1 ]] && eval $cmd
    asr_prefix=spm_${vocab_type}${asr_vocab_size}_asr

    echo "stage 0: ST Data Preparation"
    cmd="python ${root_dir}/examples/speech_to_text/prep_st_data.py
        --data-root ${org_data_dir}
        --output-root ${data_dir}
        --task st
        --add-src
        --cmvn-type utterance
        --vocab-type ${vocab_type}
        --vocab-size ${vocab_size}"

    if [[ ${use_specific_dict} -eq 1 ]]; then
        cp -r ${specific_dir}/${asr_vocab_prefix}.* ${data_dir}/${lang}
        cp -r ${specific_dir}/${st_vocab_prefix}.* ${data_dir}/${lang}
        if [[ $share_dict -eq 1 ]]; then
            cmd="$cmd
        --share
        --st-spm-prefix ${st_vocab_prefix}"
        else
            cmd="$cmd
        --st-spm-prefix ${st_vocab_prefix}
        --asr-prefix ${asr_vocab_prefix}"
        fi
    else
        if [[ $share_dict -eq 1 ]]; then
            cmd="$cmd
        --share"
        else
            cmd="$cmd
        --asr-prefix ${asr_prefix}"
        fi
    fi
    if [[ ${speed_perturb} -eq 1 ]]; then
        cmd="$cmd
        --speed-perturb"
    fi
    if [[ ${lcrm} -eq 1 ]]; then
        cmd="$cmd
        --lowercase-src
        --rm-punc-src"
    fi
    if [[ ${tokenizer} -eq 1 ]]; then
        cmd="$cmd
        --tokenizer"
    fi

    echo -e "\033[34mRun command: \n${cmd} \033[0m"
    [[ $eval -eq 1 ]] && eval ${cmd}
    deactivate
fi

data_dir=${data_dir}/${lang}

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    echo "stage 1: ST Network Training"
    [[ ! -d ${data_dir} ]] && echo "The data dir ${data_dir} is not existing!" && exit 1;

    if [[ -z ${device} || ${#device[@]} -eq 0 ]]; then
		if [[ ${gpu_num} -eq 0 ]]; then
			device=()
		else
        	source ./local/utils.sh
        	device=$(get_devices $gpu_num 0)
		fi
    fi

    echo -e "dev=${device} data=${data_dir} model=${model_dir}"

    if [[ ! -d ${model_dir} ]]; then
        mkdir -p ${model_dir}
    else
        echo "${model_dir} exists."
    fi

    cp ${BASH_SOURCE[0]} ${model_dir}
    cp ${PWD}/train.sh ${model_dir}
    cp ${train_config} ${model_dir}

    cmd="python3 -u ${root_dir}/fairseq_cli/train.py
        ${data_dir}
        --config-yaml ${data_config}
        --train-config ${train_config}
        --task ${task}
        --max-tokens ${max_tokens}
        --skip-invalid-size-inputs-valid-test
        --update-freq ${update_freq}
        --log-interval 100
        --save-dir ${model_dir}
        --tensorboard-logdir ${model_dir}"

    if [[ -n ${extra_parameter} ]]; then
        cmd="${cmd}
        ${extra_parameter}"
    fi
	if [[ ${gpu_num} -gt 0 ]]; then
		cmd="${cmd}
        --distributed-world-size $gpu_num
        --ddp-backend no_c10d"
	fi
    if [[ $fp16 -eq 1 ]]; then
        cmd="${cmd}
        --fp16"
    fi
    if [[ $step_valid -eq 1 ]]; then
        validate_interval=1
        save_interval=1
        keep_last_epochs=10
        no_epoch_checkpoints=0
        save_interval_updates=500
        keep_interval_updates=10
    else
        validate_interval=1
        keep_last_epochs=10
    fi
    if [[ $bleu_valid -eq 1 ]]; then
        cmd="$cmd
        --eval-bleu
        --eval-bleu-args '{\"beam\": 1}'
        --eval-tokenized-bleu
        --eval-bleu-remove-bpe
        --best-checkpoint-metric bleu
        --maximize-best-checkpoint-metric"
    fi
    if [[ -n $no_epoch_checkpoints && $no_epoch_checkpoints -eq 1 ]]; then
        cmd="$cmd
        --no-epoch-checkpoints"
    fi
    if [[ -n $validate_interval ]]; then
        cmd="${cmd}
        --validate-interval $validate_interval "
    fi
    if [[ -n $save_interval ]]; then
        cmd="${cmd}
        --save-interval $save_interval "
    fi
    if [[ -n $keep_last_epochs ]]; then
        cmd="${cmd}
        --keep-last-epochs $keep_last_epochs "
    fi
    if [[ -n $save_interval_updates ]]; then
        cmd="${cmd}
        --save-interval-updates $save_interval_updates"
        if [[ -n $keep_interval_updates ]]; then
        cmd="${cmd}
        --keep-interval-updates $keep_interval_updates"
        fi
    fi

    echo -e "\033[34mRun command: \n${cmd} \033[0m"

    # save info
    log=./history.log
    echo "${time} | ${device} | ${data_dir} | ${model_dir} " >> $log
    cat $log | tail -n 50 > tmp.log
    mv tmp.log $log
    export CUDA_VISIBLE_DEVICES=${device}

    cmd="nohup ${cmd} >> ${model_dir}/train.log 2>&1 &"
    if [[ $eval -eq 1 ]]; then
		eval $cmd
		sleep 2s
		tail -n `wc -l ${model_dir}/train.log | awk '{print $1+1}'` -f ${model_dir}/train.log
	fi
fi
wait

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
    echo "stage 2: ST Decoding"
    if [[ ${n_average} -ne 1 ]]; then
        # Average models
		dec_model=avg_${n_average}_checkpoint.pt

		cmd="python ${root_dir}/scripts/average_checkpoints.py
        --inputs ${model_dir}
        --num-epoch-checkpoints ${n_average}
        --output ${model_dir}/${dec_model}"
    	echo -e "\033[34mRun command: \n${cmd} \033[0m"
    	[[ $eval -eq 1 ]] && eval $cmd
	else
		dec_model=${dec_model}
	fi

    if [[ -z ${device} || ${#device[@]} -eq 0 ]]; then
		if [[ ${gpu_num} -eq 0 ]]; then
			device=()
		else
        	source ./local/utils.sh
        	device=$(get_devices $gpu_num 0)
		fi
    fi
    export CUDA_VISIBLE_DEVICES=${device}

	result_file=${model_dir}/decode_result
	[[ -f ${result_file} ]] && rm ${result_file}

    test_subset=(${test_subset//,/ })
	for subset in ${test_subset[@]}; do
        subset=${subset}_st
  		cmd="python ${root_dir}/fairseq_cli/generate.py
        ${data_dir}
        --config-yaml ${data_config}
        --gen-subset ${subset}
        --task speech_to_text
        --path ${model_dir}/${dec_model}
        --results-path ${model_dir}
        --max-tokens ${max_tokens}
        --beam ${beam_size}
        --lenpen ${len_penalty}
        --scoring sacrebleu"
    	echo -e "\033[34mRun command: \n${cmd} \033[0m"

        if [[ $eval -eq 1 ]]; then
    	    eval $cmd
    	    tail -n 1 ${model_dir}/generate-${subset}.txt >> ${result_file}
        fi
	done
    cat ${result_file}
fi