prep_asr_data.py 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
import os
from pathlib import Path
import shutil
from itertools import groupby
from tempfile import NamedTemporaryFile
import string
import csv

import numpy as np
import pandas as pd
import torchaudio
from examples.speech_to_text.data_utils import (
    create_zip,
    extract_fbank_features,
    filter_manifest_df,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    load_df_from_tsv,
    save_df_to_tsv,
    cal_gcmvn_stats,
)
from torch.utils.data import Dataset
from tqdm import tqdm


log = logging.getLogger(__name__)


MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]


class ASR_Dataset(Dataset):
    """
    Create a Dataset for MuST-C. Each item is a tuple of the form:
    waveform, sample_rate, source utterance, target utterance, speaker_id,
    utterance_id
    """

    def __init__(self, root: str, lang, split: str, speed_perturb: bool = False, tokenizer: bool = False) -> None:
        _root = Path(root) / f"{lang}" / split
        wav_root, txt_root = _root / "wav", _root / "txt"
        if tokenizer:
            txt_root = _root / "txt.tok"
        assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir(), (_root, wav_root, txt_root)
        # Load audio segments
        try:
            import yaml
        except ImportError:
            print("Please install PyYAML to load the MuST-C YAML files")
        with open(txt_root / f"{split}.yaml") as f:
            segments = yaml.load(f, Loader=yaml.BaseLoader)

        self.speed_perturb = [0.9, 1.0, 1.1] if speed_perturb and split.startswith("train") else None
        # Load source and target utterances
        with open(txt_root / f"{split}.{lang}") as f:
            utterances = [r.strip() for r in f]
        assert len(segments) == len(utterances)
        for i, u in enumerate(utterances):
            segments[i][lang] = u
        # Gather info
        self.data = []
        for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
            wav_path = wav_root / wav_filename
            try:
                sample_rate = torchaudio.info(wav_path.as_posix())[0].rate
            except TypeError:
                sample_rate = torchaudio.info(wav_path.as_posix()).sample_rate
            seg_group = sorted(_seg_group, key=lambda x: float(x["offset"]))
            for i, segment in enumerate(seg_group):
                offset = int(float(segment["offset"]) * sample_rate)
                n_frames = int(float(segment["duration"]) * sample_rate)
                _id = f"{split}_{wav_path.stem}_{i}"
                self.data.append(
                    (
                        wav_path.as_posix(),
                        offset,
                        n_frames,
                        sample_rate,
                        segment[lang],
                        segment["speaker_id"] if "speaker_id" in segment else "spk1",
                        _id,
                    )
                )

    def __getitem__(self, n: int):
        wav_path, offset, n_frames, sr, utt, spk_id, utt_id = self.data[n]

        items = []
        if self.speed_perturb is None:
            waveform, _ = torchaudio.load(wav_path, frame_offset=offset, num_frames=n_frames)
            items.append([waveform, sr, n_frames, utt, spk_id, utt_id])
        else:
            for speed in self.speed_perturb:
                sp_utt_id = f"sp{speed}_" + utt_id
                sp_n_frames = n_frames / speed
                if speed == 1.0:
                    waveform, _ = torchaudio.load(wav_path, frame_offset=offset, num_frames=n_frames)
                else:
                    waveform, _ = torchaudio.load(wav_path, frame_offset=offset, num_frames=n_frames)
                    effects = [
                        ["speed", f"{speed}"],
                        ["rate", f"{sr}"]
                    ]
                    waveform, _ = torchaudio.sox_effects.apply_effects_tensor(waveform, sr, effects)

                items.append([waveform, sr, sp_n_frames, utt, spk_id, sp_utt_id])
        return items

    def get_wav(self, n: int, speed_perturb=1.0):
        wav_path, offset, n_frames, sr, utt, spk_id, utt_id = self.data[n]

        if self.speed_perturb is None or speed_perturb == 1.0:
            waveform, _ = torchaudio.load(wav_path, frame_offset=offset, num_frames=n_frames)
        else:
            waveform, _ = torchaudio.load(wav_path, frame_offset=offset, num_frames=n_frames)
            effects = [
                ["speed", f"{speed_perturb}"],
                ["rate", f"{sr}"]
            ]
            waveform, _ = torchaudio.sox_effects.apply_effects_tensor(waveform, sr, effects)
        return waveform

    def get_fast(self, n: int):
        wav_path, offset, n_frames, sr, utt, spk_id, utt_id = self.data[n]

        items = []
        if self.speed_perturb is None:
            items.append([wav_path, sr, n_frames, utt, spk_id, utt_id])
        else:
            for speed in self.speed_perturb:
                sp_utt_id = f"sp{speed}_" + utt_id
                sp_n_frames = n_frames / speed
                items.append([wav_path, sr, sp_n_frames, utt, spk_id, sp_utt_id])
        return items

    def get_text(self):
        src_text = []
        for item in self.data:
            src_text.append(item[4])
        return src_text

    def __len__(self) -> int:
        return len(self.data)


def process(args):
    root = Path(args.data_root).absolute()
    splits = args.splits.split(",")
    lang = args.lang
    cur_root = root / f"{lang}"
    if not cur_root.is_dir():
        print(f"{cur_root.as_posix()} does not exist. Skipped.")
        return
    if args.output_root is None:
        output_root = cur_root
    else:
        output_root = Path(args.output_root).absolute() / f"{lang}"

    # Extract features
    if args.speed_perturb:
        zip_path = output_root / "fbank80_sp.zip"
    else:
        zip_path = output_root / "fbank80.zip"
    index = 0

    gen_feature_flag = False
    if not Path.exists(zip_path):
        gen_feature_flag = True

    if args.overwrite or gen_feature_flag:
        if args.speed_perturb:
            feature_root = output_root / "fbank80_sp"
        else:
            feature_root = output_root / "fbank80"
        feature_root.mkdir(exist_ok=True)

        for split in splits:
            print(f"Fetching split {split}...")
            dataset = ASR_Dataset(root.as_posix(), lang, split, args.speed_perturb, args.tokenizer)
            is_train_split = split.startswith("train")
            print("Extracting log mel filter bank features...")
            if is_train_split and args.cmvn_type == "global":
                print("And estimating cepstral mean and variance stats...")
                gcmvn_feature_list = []

            for idx in tqdm(range(len(dataset))):
                items = dataset.get_fast(idx)
                for item in items:
                    index += 1
                    wav_path, sr, _, _, _, utt_id = item

                    features_path = (feature_root / f"{utt_id}.npy").as_posix()
                    if not os.path.exists(features_path):
                        sp = 1.0
                        if dataset.speed_perturb is not None:
                            sp = float(utt_id.split("_")[0].replace("sp", ""))
                        waveform = dataset.get_wav(idx, sp)
                        if waveform.shape[1] == 0:
                            continue
                        features = extract_fbank_features(waveform, sr, Path(features_path))

                        if split == 'train' and args.cmvn_type == "global" and not utt_id.startswith("sp"):
                            if len(gcmvn_feature_list) < args.gcmvn_max_num:
                                gcmvn_feature_list.append(features)

                if is_train_split and args.size != -1 and index > args.size:
                    break

            if is_train_split and args.cmvn_type == "global":
                # Estimate and save cmv
                stats = cal_gcmvn_stats(gcmvn_feature_list)
                with open(output_root / "gcmvn.npz", "wb") as f:
                    np.savez(f, mean=stats["mean"], std=stats["std"])

        # Pack features into ZIP
        print("ZIPing features...")
        create_zip(feature_root, zip_path)

        # Clean up
        shutil.rmtree(feature_root)

    gen_manifest_flag = False
    for split in splits:
        if not Path.exists(output_root / f"{split}_{args.task}.tsv"):
            gen_manifest_flag = True
            break

    train_text = []
    if args.overwrite or gen_manifest_flag:
        print("Fetching ZIP manifest...")
        zip_manifest = get_zip_manifest(zip_path)
        # Generate TSV manifest
        print("Generating manifest...")
        for split in splits:
            is_train_split = split.startswith("train")
            manifest = {c: [] for c in MANIFEST_COLUMNS}
            if args.task == "st" and args.add_src:
                manifest["src_text"] = []

            dataset = ASR_Dataset(args.data_root, lang, split, args.speed_perturb, args.tokenizer)
            for idx in range(len(dataset)):
                items = dataset.get_fast(idx)
                for item in items:
                    _, sr, n_frames, utt, speaker_id, utt_id = item
                    manifest["id"].append(utt_id)
                    manifest["audio"].append(zip_manifest[utt_id])
                    duration_ms = int(n_frames / sr * 1000)
                    manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10))
                    if args.lowercase_src:
                        utt = utt.lower()
                    if args.rm_punc_src:
                        for w in string.punctuation:
                            utt = utt.replace(w, "")
                    manifest["tgt_text"].append(utt)
                    manifest["speaker"].append(speaker_id)

                if is_train_split and args.size != -1 and len(manifest["id"]) > args.size:
                    break
            if is_train_split:
                train_text.extend(manifest["tgt_text"])

            df = pd.DataFrame.from_dict(manifest)
            df = filter_manifest_df(df, is_train_split=is_train_split)
            save_df_to_tsv(df, output_root / f"{split}_{args.task}.tsv")

    # Generate vocab
    v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
    spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}"
    gen_vocab_flag = True

    if args.asr_prefix is not None:
        gen_vocab_flag = False
        spm_filename_prefix = args.asr_prefix

    if gen_vocab_flag:
        if len(train_text) == 0:
            print("Loading the training text to build dictionary...")

            for split in args.SPLITS:
                if split.startswith("train"):
                    csv_path = output_root / f"{split}_{args.task}.tsv"
                    with open(csv_path) as f:
                        reader = csv.DictReader(
                            f,
                            delimiter="\t",
                            quotechar=None,
                            doublequote=False,
                            lineterminator="\n",
                            quoting=csv.QUOTE_NONE,
                        )

                    tgt_text = [dict(e)["tgt_text"] for e in reader]
                    train_text.extend(tgt_text)

        with NamedTemporaryFile(mode="w") as f:
            for t in train_text:
                f.write(t + "\n")
            gen_vocab(
                Path(f.name),
                output_root / spm_filename_prefix,
                args.vocab_type,
                args.vocab_size,
            )

    # Generate config YAML
    yaml_filename = f"config_{args.task}.yaml"

    gen_config_yaml(
        output_root,
        spm_filename_prefix + ".model",
        yaml_filename=yaml_filename,
        specaugment_policy="lb",
        cmvn_type=args.cmvn_type,
        gcmvn_path=(
            output_root / "gcmvn.npz" if args.cmvn_type == "global"
            else None
        ),
        share_src_and_tgt=True if args.task == "asr" else False
    )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-root", "-d", required=True, type=str)
    parser.add_argument("--output-root", "-o", default=None, type=str)
    parser.add_argument(
        "--vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument("--vocab-size", default=8000, type=int)
    parser.add_argument("--task", type=str, default="asr", choices=["asr", "st"])
    parser.add_argument("--lang", type=str, required=True, help="language")
    parser.add_argument("--splits", type=str, default="train,dev,test", help="dataset splits")
    parser.add_argument("--speed-perturb", action="store_true", default=False,
                        help="apply speed perturbation on wave file")
    parser.add_argument("--share", action="store_true",
                        help="share the tokenizer and dictionary of the transcription and translation")
    parser.add_argument("--asr-prefix", type=str, default=None, help="prefix of the asr dict")
    parser.add_argument("--lowercase-src", action="store_true", help="lowercase the source text")
    parser.add_argument("--rm-punc-src", action="store_true", help="remove the punctuation of the source text")
    parser.add_argument("--tokenizer", action="store_true", help="use tokenizer txt")
    parser.add_argument("--cmvn-type", default="utterance",
                        choices=["global", "utterance"],
                        help="The type of cepstral mean and variance normalization")
    parser.add_argument("--overwrite", action="store_true", help="overwrite the existing files")
    parser.add_argument("--gcmvn-max-num", default=150000, type=int,
                        help=(
                            "Maximum number of sentences to use to estimate"
                            "global mean and variance"
                            ))
    args = parser.parse_args()

    process(args)


if __name__ == "__main__":
    main()