dictionary.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
from collections import Counter
from multiprocessing import Pool

import torch
from fairseq import utils
from fairseq.binarizer import safe_readline
from fairseq.data import data_utils
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line


class Dictionary:
    """A mapping from symbols to consecutive integers"""

    def __init__(
        self,
        *,  # begin keyword-only arguments
        bos="<s>",
        pad="<pad>",
        eos="</s>",
        unk="<unk>",
        extra_special_symbols=None,
    ):
        self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
        self.symbols = []
        self.count = []
        self.indices = {}
        self.bos_index = self.add_symbol(bos)
        self.pad_index = self.add_symbol(pad)
        self.eos_index = self.add_symbol(eos)
        self.unk_index = self.add_symbol(unk)
        if extra_special_symbols:
            for s in extra_special_symbols:
                self.add_symbol(s)
        self.nspecial = len(self.symbols)

    def __eq__(self, other):
        return self.indices == other.indices

    def __getitem__(self, idx):
        if idx < len(self.symbols):
            return self.symbols[idx]
        return self.unk_word

    def __len__(self):
        """Returns the number of symbols in the dictionary"""
        return len(self.symbols)

    def __contains__(self, sym):
        return sym in self.indices

    def index(self, sym):
        """Returns the index of the specified symbol"""
        assert isinstance(sym, str)
        if sym in self.indices:
            return self.indices[sym]
        return self.unk_index

    def string(
        self,
        tensor,
        bpe_symbol=None,
        escape_unk=False,
        extra_symbols_to_ignore=None,
        unk_string=None,
        include_eos=False,
    ):
        """Helper for converting a tensor of token indices to a string.

        Can optionally remove BPE symbols or escape <unk> words.
        """
        if torch.is_tensor(tensor) and tensor.dim() == 2:
            return "\n".join(
                self.string(t, bpe_symbol, escape_unk, extra_symbols_to_ignore, include_eos=include_eos)
                for t in tensor
            )

        extra_symbols_to_ignore = set(extra_symbols_to_ignore or [])
        extra_symbols_to_ignore.add(self.eos())

        def token_string(i):
            if i == self.unk():
                if unk_string is not None:
                    return unk_string
                else:
                    return self.unk_string(escape_unk)
            else:
                return self[i]

        if hasattr(self, "bos_index"):
            extra_symbols_to_ignore.add(self.bos())

        sent = " ".join(
            token_string(i)
            for i in tensor
            if utils.item(i) not in extra_symbols_to_ignore
        )

        return data_utils.post_process(sent, bpe_symbol)

    def unk_string(self, escape=False):
        """Return unknown string, optionally escaped as: <<unk>>"""
        if escape:
            return "<{}>".format(self.unk_word)
        else:
            return self.unk_word

    def add_symbol(self, word, n=1, overwrite=False):
        """Adds a word to the dictionary"""
        if word in self.indices and not overwrite:
            idx = self.indices[word]
            self.count[idx] = self.count[idx] + n
            return idx
        else:
            idx = len(self.symbols)
            self.indices[word] = idx
            self.symbols.append(word)
            self.count.append(n)
            return idx

    def update(self, new_dict):
        """Updates counts from new dictionary."""
        for word in new_dict.symbols:
            idx2 = new_dict.indices[word]
            if word in self.indices:
                idx = self.indices[word]
                self.count[idx] = self.count[idx] + new_dict.count[idx2]
            else:
                idx = len(self.symbols)
                self.indices[word] = idx
                self.symbols.append(word)
                self.count.append(new_dict.count[idx2])

    def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
        """Sort symbols by frequency in descending order, ignoring special ones.

        Args:
            - threshold defines the minimum word count
            - nwords defines the total number of words in the final dictionary,
                including special symbols
            - padding_factor can be used to pad the dictionary size to be a
                multiple of 8, which is important on some hardware (e.g., Nvidia
                Tensor Cores).
        """
        if nwords <= 0:
            nwords = len(self)

        new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial)))
        new_symbols = self.symbols[: self.nspecial]
        new_count = self.count[: self.nspecial]

        c = Counter(
            dict(
                sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :]))
            )
        )
        for symbol, count in c.most_common(nwords - self.nspecial):
            if count >= threshold:
                new_indices[symbol] = len(new_symbols)
                new_symbols.append(symbol)
                new_count.append(count)
            else:
                break

        assert len(new_symbols) == len(new_indices)

        self.count = list(new_count)
        self.symbols = list(new_symbols)
        self.indices = new_indices

        self.pad_to_multiple_(padding_factor)

    def pad_to_multiple_(self, padding_factor):
        """Pad Dictionary size to be a multiple of *padding_factor*."""
        if padding_factor > 1:
            i = 0
            while len(self) % padding_factor != 0:
                symbol = "madeupword{:04d}".format(i)
                self.add_symbol(symbol, n=0)
                i += 1

    def bos(self):
        """Helper to get index of beginning-of-sentence symbol"""
        return self.bos_index

    def pad(self):
        """Helper to get index of pad symbol"""
        return self.pad_index

    def eos(self):
        """Helper to get index of end-of-sentence symbol"""
        return self.eos_index

    def unk(self):
        """Helper to get index of unk symbol"""
        return self.unk_index

    @classmethod
    def load(cls, f):
        """Loads the dictionary from a text file with the format:

        ```
        <symbol0> <count0>
        <symbol1> <count1>
        ...
        ```
        """
        d = cls()
        d.add_from_file(f)
        return d

    def add_from_file(self, f):
        """
        Loads a pre-existing dictionary from a text file and adds its symbols
        to this instance.
        """
        if isinstance(f, str):
            try:
                with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd:
                    self.add_from_file(fd)
            except FileNotFoundError as fnfe:
                raise fnfe
            except UnicodeError:
                raise Exception(
                    "Incorrect encoding detected in {}, please "
                    "rebuild the dataset".format(f)
                )
            return

        lines = f.readlines()
        indices_start_line = self._load_meta(lines)

        for line in lines[indices_start_line:]:
            try:
                line, field = line.rstrip().rsplit(" ", 1)
                if field == "#fairseq:overwrite":
                    overwrite = True
                    line, field = line.rsplit(" ", 1)
                else:
                    overwrite = False
                count = int(field)
                word = line
                if word in self and not overwrite:
                    raise RuntimeError(
                        "Duplicate word found when loading Dictionary: '{}'. "
                        "Duplicate words can overwrite earlier ones by adding the "
                        "#fairseq:overwrite flag at the end of the corresponding row "
                        "in the dictionary file. If using the Camembert model, please "
                        "download an updated copy of the model file.".format(word)
                    )
                self.add_symbol(word, n=count, overwrite=overwrite)
            except ValueError:
                raise ValueError(
                    "Incorrect dictionary format, expected '<token> <cnt> [flags]'"
                )

    def _save(self, f, kv_iterator):
        if isinstance(f, str):
            PathManager.mkdirs(os.path.dirname(f))
            with PathManager.open(f, "w", encoding="utf-8") as fd:
                return self.save(fd)
        for k, v in kv_iterator:
            print("{} {}".format(k, v), file=f)

    def _get_meta(self):
        return [], []

    def _load_meta(self, lines):
        return 0

    def save(self, f):
        """Stores dictionary into a text file"""
        ex_keys, ex_vals = self._get_meta()
        self._save(
            f,
            zip(
                ex_keys + self.symbols[self.nspecial :],
                ex_vals + self.count[self.nspecial :],
            ),
        )

    def dummy_sentence(self, length):
        t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long()
        t[-1] = self.eos()
        return t

    def encode_line(
        self,
        line,
        line_tokenizer=tokenize_line,
        add_if_not_exist=True,
        consumer=None,
        append_eos=True,
        reverse_order=False,
    ) -> torch.IntTensor:
        words = line_tokenizer(line)
        if reverse_order:
            words = list(reversed(words))
        nwords = len(words)
        ids = torch.IntTensor(nwords + 1 if append_eos else nwords)

        for i, word in enumerate(words):
            if add_if_not_exist:
                idx = self.add_symbol(word)
            else:
                idx = self.index(word)
            if consumer is not None:
                consumer(word, idx)
            ids[i] = idx
        if append_eos:
            ids[nwords] = self.eos_index
        return ids

    @staticmethod
    def _add_file_to_dictionary_single_worker(
        filename, tokenize, eos_word, worker_id=0, num_workers=1
    ):
        counter = Counter()
        with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f:
            size = os.fstat(f.fileno()).st_size
            chunk_size = size // num_workers
            offset = worker_id * chunk_size
            end = offset + chunk_size
            f.seek(offset)
            if offset > 0:
                safe_readline(f)  # drop first incomplete line
            line = f.readline()
            while line:
                for word in tokenize(line):
                    counter.update([word])
                counter.update([eos_word])
                # f.tell() returns only an opaque number which can
                # return to the position in the file via f.seek()
                # and does not necessarily represent a byte position
                # in the file. However, f.tell() is faithful to the
                # byte position _most of the time_. Thus we can just
                # check against the file size to prevent early exit.
                if f.tell() > end and f.tell() < size:
                    break
                line = f.readline()
        return counter

    @staticmethod
    def add_file_to_dictionary(filename, dict, tokenize, num_workers):
        def merge_result(counter):
            for w, c in sorted(counter.items()):
                dict.add_symbol(w, c)

        if num_workers > 1:
            pool = Pool(processes=num_workers)
            results = []
            for worker_id in range(num_workers):
                results.append(
                    pool.apply_async(
                        Dictionary._add_file_to_dictionary_single_worker,
                        (filename, tokenize, dict.eos_word, worker_id, num_workers),
                    )
                )
            pool.close()
            pool.join()
            for r in results:
                merge_result(r.get())
        else:
            merge_result(
                Dictionary._add_file_to_dictionary_single_worker(
                    filename, tokenize, dict.eos_word
                )
            )


class TruncatedDictionary(object):
    def __init__(self, wrapped_dict, length):
        self.__class__ = type(
            wrapped_dict.__class__.__name__,
            (self.__class__, wrapped_dict.__class__),
            {},
        )
        self.__dict__ = wrapped_dict.__dict__
        self.wrapped_dict = wrapped_dict
        self.length = min(len(self.wrapped_dict), length)

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        if i < self.length:
            return self.wrapped_dict[i]
        return self.wrapped_dict.unk()