adafactor.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.optim

from . import LegacyFairseqOptimizer, register_optimizer


@register_optimizer("adafactor")
class FairseqAdafactor(LegacyFairseqOptimizer):
    def __init__(self, args, params):
        super().__init__(args)
        self._optimizer = Adafactor(params, **self.optimizer_config)

    @staticmethod
    def add_args(parser):
        """Add optimizer-specific arguments to the parser."""
        # fmt: off
        parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E",
                            help='epsilons for Adafactor optimizer')
        parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C",
                            help='threshold for clipping update root mean square')
        parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D",
                            help='decay rate of the second moment estimator')
        parser.add_argument('--beta1', type=float, default=None, metavar="B",
                            help='beta for first moment estimator. Optional')
        parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
                            help='weight decay')
        parser.add_argument('--scale-parameter', action='store_true',
                            help='scale learning rate by root mean square of parameter')
        parser.add_argument('--relative-step', action='store_true',
                            help='set learning rate to inverse square root of timestep,'
                                 'otherwise use external learning rate')
        parser.add_argument('--warmup-init', action='store_true',
                            help='use relative step for warm-up learning rate schedule')
        # fmt: on

    @property
    def optimizer_config(self):
        """
        Return a kwarg dictionary that will be used to override optimizer
        args stored in checkpoints. This allows us to load a checkpoint and
        resume training using a different set of optimizer args, e.g., with a
        different learning rate.
        Note : Convergence issues empirically observed with fp16 on.
               Might require search for appropriate configuration.
        """
        return {
            "lr": self.args.lr[0],
            "eps": eval(self.args.adafactor_eps),
            "clip_threshold": self.args.clip_threshold,
            "decay_rate": self.args.decay_rate,
            "beta1": self.args.beta1,
            "weight_decay": self.args.weight_decay,
            "scale_parameter": self.args.scale_parameter,  # defaults to False
            "relative_step": self.args.relative_step,  # defaults to False
            "warmup_init": self.args.warmup_init,
        }


class Adafactor(torch.optim.Optimizer):
    """Implements Adafactor algorithm.

    This implementation is based on:
    `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
    (see https://arxiv.org/abs/1804.04235)

    Note that this optimizer internally adjusts the learning rate
    depending on the *scale_parameter*, *relative_step* and
    *warmup_init* options. To use a manual (external) learning rate
    schedule you should set `scale_parameter=False` and
    `relative_step=False`.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): external learning rate (default: None)
        eps (tuple[float, float]): regularization constans for square gradient
            and parameter scale respectively (default: (1e-30, 1e-3))
        clip_threshold (float): threshold of root mean square of
            final gradient update (default: 1.0)
        decay_rate (float): coefficient used to compute running averages of square
            gradient (default: -0.8)
        beta1 (float): coefficient used for computing running averages of gradient
            (default: None)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        scale_parameter (bool): if True, learning rate is scaled by root mean square of
            parameter (default: True)
        relative_step (bool): if True, time-dependent learning rate is computed
            instead of external learning rate (default: True)
        warmup_init (bool): time-dependent learning rate computation depends on
            whether warm-up initialization is being used (default: False)
    """

    def __init__(
        self,
        params,
        lr=None,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        scale_parameter=True,
        relative_step=True,
        warmup_init=False,
    ):
        if lr is not None and relative_step:
            raise ValueError("Cannot combine manual lr and relative_step options")
        if warmup_init and not relative_step:
            raise ValueError("warmup_init requires relative_step=True")

        defaults = dict(
            lr=lr,
            eps=eps,
            clip_threshold=clip_threshold,
            decay_rate=decay_rate,
            beta1=beta1,
            weight_decay=weight_decay,
            scale_parameter=scale_parameter,
            relative_step=relative_step,
            warmup_init=warmup_init,
        )
        super(Adafactor, self).__init__(params, defaults)

    @property
    def supports_memory_efficient_fp16(self):
        return True

    @property
    def supports_flat_params(self):
        return False

    def _get_lr(self, param_group, param_state):
        rel_step_sz = param_group["lr"]
        if param_group["relative_step"]:
            min_step = (
                1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
            )
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
        param_scale = 1.0
        if param_group["scale_parameter"]:
            param_scale = max(param_group["eps"][1], param_state["RMS"])
        return param_scale * rel_step_sz

    def _get_options(self, param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group["beta1"] is not None
        return factored, use_first_moment

    def _rms(self, tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
        r_factor = (
            (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
            .rsqrt_()
            .unsqueeze(-1)
        )
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()
                if grad.is_sparse:
                    raise RuntimeError("Adafactor does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(group, grad_shape)
                # State Initialization
                if len(state) == 0:
                    state["step"] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state["exp_avg"] = torch.zeros_like(grad)
                    if factored:
                        state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
                        state["exp_avg_sq_col"] = torch.zeros(
                            grad_shape[:-2] + grad_shape[-1:]
                        ).to(grad)
                    else:
                        state["exp_avg_sq"] = torch.zeros_like(grad)

                    state["RMS"] = 0
                else:
                    if use_first_moment:
                        state["exp_avg"] = state["exp_avg"].to(grad)
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p.data
                if p.data.dtype in {torch.float16, torch.bfloat16}:
                    p_data_fp32 = p_data_fp32.float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                group["lr"] = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                update = (grad ** 2) + group["eps"][0]
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(
                        update.mean(dim=-1), alpha=1.0 - beta2t
                    )
                    exp_avg_sq_col.mul_(beta2t).add_(
                        update.mean(dim=-2), alpha=1.0 - beta2t
                    )

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_(
                    (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)
                )
                update.mul_(group["lr"])

                if use_first_moment:
                    exp_avg = state["exp_avg"]
                    exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"])
                    update = exp_avg

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(
                        p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
                    )

                p_data_fp32.add_(-update)

                if p.data.dtype in {torch.float16, torch.bfloat16}:
                    p.data.copy_(p_data_fp32)

        return loss