Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
0ce623be
Commit
0ce623be
authored
Sep 05, 2021
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add the block attention for pyramid transformer
parent
6292949b
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
49 行增加
和
4 行删除
+49
-4
egs/librispeech/asr/conf/ctc_debug.yaml
+2
-2
egs/librispeech/asr/conf/tmp.yaml
+0
-2
fairseq/models/speech_to_text/pys2t_transformer.py
+47
-0
没有找到文件。
egs/librispeech/asr/conf/ctc_debug.yaml
查看文件 @
0ce623be
...
...
@@ -12,7 +12,7 @@ log-interval: 100
seed
:
1
report-accuracy
:
True
#
arch: s2t_transformer_s
arch
:
s2t_transformer_s
share-decoder-input-output-embed
:
True
optimizer
:
adam
clip-norm
:
10.0
...
...
@@ -26,7 +26,7 @@ ctc-weight: 0.3
criterion
:
label_smoothed_cross_entropy_with_ctc
label_smoothing
:
0.1
#
conv-kernel-sizes: 5,5
conv-kernel-sizes
:
5,5
conv-channels
:
1024
dropout
:
0.1
activation-fn
:
relu
...
...
egs/librispeech/asr/conf/tmp.yaml
deleted
100644 → 0
查看文件 @
6292949b
fairseq/models/speech_to_text/pys2t_transformer.py
查看文件 @
0ce623be
...
...
@@ -20,6 +20,7 @@ from fairseq.modules import (
LayerNorm
,
PositionalEmbedding
,
PyramidTransformerEncoderLayer
,
MultiheadAttention
,
)
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -61,6 +62,12 @@ class ReducedEmbed(nn.Module):
# self.norm = LayerNorm(out_channels)
self
.
norm
=
LayerNorm
(
in_channels
)
if
out_channels
%
in_channels
==
0
:
self
.
residual
=
True
else
:
self
.
residual
=
False
self
.
residual
=
False
def
forward
(
self
,
x
,
lengths
):
seq_len
,
bsz
,
dim
=
x
.
size
()
assert
seq_len
%
self
.
stride
==
0
,
"The sequence length
%
d must be a multiple of
%
d."
%
(
seq_len
,
self
.
stride
)
...
...
@@ -73,6 +80,9 @@ class ReducedEmbed(nn.Module):
x
.
masked_fill_
(
mask_pad
,
0.0
)
x
=
x
.
transpose
(
0
,
1
)
if
self
.
residual
:
origin_x
=
x
.
transpose
(
0
,
1
)
.
contiguous
()
.
view
(
bsz
,
int
(
seq_len
/
self
.
stride
),
-
1
)
.
transpose
(
0
,
1
)
if
self
.
embed_norm
:
x
=
self
.
norm
(
x
)
x
=
x
.
permute
(
1
,
2
,
0
)
# B * D * T
...
...
@@ -91,6 +101,12 @@ class ReducedEmbed(nn.Module):
x
.
masked_fill_
(
mask_pad
,
0.0
)
x
=
x
.
transpose
(
0
,
1
)
if
self
.
residual
:
if
x
.
size
()
==
origin_x
.
size
():
x
+=
origin_x
else
:
logging
.
error
(
"The size is unmatched {} and {}"
.
format
(
x
.
size
(),
origin_x
.
size
()))
return
x
,
lengths
,
padding_mask
...
...
@@ -249,10 +265,25 @@ class PyS2TTransformerEncoder(FairseqEncoder):
PyramidTransformerEncoderLayer
(
args
,
embed_dim
,
embed_dim
*
ffn_ratio
,
num_head
,
attn_sample_ratio
)
for
_
in
range
(
num_layers
)])
if
i
!=
0
:
attn
=
MultiheadAttention
(
embed_dim
,
num_head
,
kdim
=
self
.
pyramid_embed_dims
[
i
-
1
],
vdim
=
self
.
pyramid_embed_dims
[
i
-
1
],
dropout
=
args
.
attention_dropout
,
encoder_decoder_attention
=
True
,
q_noise
=
self
.
quant_noise
,
qn_block_size
=
self
.
quant_noise_block_size
,
)
else
:
attn
=
None
setattr
(
self
,
f
"reduced_embed{i + 1}"
,
reduced_embed
)
setattr
(
self
,
f
"pos_embed{i + 1}"
,
pos_embed
)
setattr
(
self
,
f
"dropout{i + 1}"
,
dropout
)
setattr
(
self
,
f
"block{i + 1}"
,
block
)
setattr
(
self
,
f
"attn{i + 1}"
,
attn
)
if
i
==
self
.
pyramid_stages
-
1
:
if
args
.
encoder_normalize_before
:
...
...
@@ -310,11 +341,14 @@ class PyS2TTransformerEncoder(FairseqEncoder):
layer_idx
=
0
ctc_logit
=
None
prev_state
=
[]
prev_padding
=
[]
for
i
in
range
(
self
.
pyramid_stages
):
reduced_embed
=
getattr
(
self
,
f
"reduced_embed{i + 1}"
)
pos_embed
=
getattr
(
self
,
f
"pos_embed{i + 1}"
)
dropout
=
getattr
(
self
,
f
"dropout{i + 1}"
)
block
=
getattr
(
self
,
f
"block{i + 1}"
)
block_attn
=
getattr
(
self
,
f
"attn{i + 1}"
)
if
i
==
0
:
x
=
self
.
embed_scale
*
x
...
...
@@ -339,6 +373,19 @@ class PyS2TTransformerEncoder(FairseqEncoder):
x
=
layer
(
x
,
encoder_padding_mask
,
pos_emb
=
positions
)
layer_idx
+=
1
if
attn
is
not
None
:
residual
=
x
x
,
attn
=
block_attn
(
query
=
x
,
key
=
prev_state
[
i
-
1
],
value
=
prev_state
[
i
-
1
],
key_padding_mask
=
prev_padding
[
i
-
1
],
)
x
+=
residual
prev_state
[
i
]
=
x
prev_padding
[
i
]
=
encoder_padding_mask
if
self
.
use_ctc
and
self
.
inter_ctc
and
self
.
ctc_layer
==
layer_idx
:
ctc_logit
=
self
.
ctc_layer_norm
(
x
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论