Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
F
Fairseq-S2T
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
xuchen
Fairseq-S2T
Commits
f0605efa
Commit
f0605efa
authored
Sep 20, 2021
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update the pyramid transformer
parent
ed623111
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
45 行增加
和
28 行删除
+45
-28
egs/librispeech/asr/conf/pyramid.yaml
+2
-1
fairseq/criterions/label_smoothed_cross_entropy_with_ctc.py
+0
-2
fairseq/models/speech_to_text/pys2t_transformer.py
+41
-22
fairseq/modules/rel_position_multihead_attention.py
+2
-3
没有找到文件。
egs/librispeech/asr/conf/pyramid.yaml
查看文件 @
f0605efa
...
...
@@ -4,6 +4,7 @@ pyramid-stages: 4
pyramid-layers
:
2_2_6_2
#encoder-attention-type: reduced
#pyramid-attn-sample-ratios: 8_4_2_1
#pyramid-block-attn: True
pyramid-sr-ratios
:
2_2_2_2
pyramid-use-ppm
:
True
pyramid-embed-dims
:
128_128_256_512
...
...
@@ -42,7 +43,7 @@ lr: 2e-3
#adam_betas: (0.9,0.98)
criterion
:
label_smoothed_cross_entropy_with_ctc
ctc-weight
:
0.
3
ctc-weight
:
0.
0
label_smoothing
:
0.1
conv-channels
:
1024
...
...
fairseq/criterions/label_smoothed_cross_entropy_with_ctc.py
查看文件 @
f0605efa
...
...
@@ -94,8 +94,6 @@ class LabelSmoothedCrossEntropyCriterionWithCTC(
ctc_loss
=
self
.
compute_ctc_loss
(
model
,
sample
,
encoder_out
)
logging_output
[
"ctc_loss"
]
=
utils
.
item
(
ctc_loss
.
data
)
loss
=
(
1
-
self
.
ctc_weight
)
*
loss
+
self
.
ctc_weight
*
ctc_loss
else
:
loss
=
(
1
-
self
.
ctc_weight
)
*
loss
logging_output
[
"loss"
]
=
utils
.
item
(
loss
.
data
)
if
reduce
else
loss
.
data
return
loss
,
sample_size
,
logging_output
...
...
fairseq/models/speech_to_text/pys2t_transformer.py
查看文件 @
f0605efa
...
...
@@ -55,16 +55,18 @@ class ReducedEmbed(nn.Module):
self
.
conv
=
nn
.
Conv1d
(
in_channels
,
out_channels
*
2
,
kernel_sizes
,
stride
=
stride
,
padding
=
padding
)
self
.
glu
=
nn
.
GLU
(
dim
=
1
)
elif
self
.
reduced_way
==
"proj"
:
self
.
proj
=
nn
.
Linear
(
2
*
in_channels
,
out_channels
,
bias
=
False
)
self
.
conv
=
nn
.
Conv1d
(
in_channels
,
out_channels
,
kernel_sizes
,
padding
=
padding
)
elif
self
.
reduced_way
==
"fuse"
:
self
.
conv
=
nn
.
Conv1d
(
in_channels
,
out_channels
,
kernel_sizes
,
stride
=
stride
,
padding
=
padding
)
self
.
conv_proj
=
nn
.
Conv1d
(
in_channels
,
out_channels
,
kernel_sizes
,
padding
=
padding
)
else
:
logger
.
error
(
"Unsupported reduced way!"
)
self
.
embed_norm
=
embed_norm
if
self
.
embed_norm
:
if
self
.
reduced_way
==
"proj"
:
self
.
norm
=
LayerNorm
(
2
*
in_channels
)
else
:
self
.
norm
=
LayerNorm
(
out_channels
)
if
self
.
reduced_way
in
[
"proj"
,
"fuse"
]:
self
.
in_norm
=
nn
.
BatchNorm1d
(
in_channels
)
self
.
norm
=
LayerNorm
(
out_channels
)
def
forward
(
self
,
x
,
lengths
):
seq_len
,
bsz
,
dim
=
x
.
size
()
...
...
@@ -78,15 +80,22 @@ class ReducedEmbed(nn.Module):
x
.
masked_fill_
(
mask_pad
,
0.0
)
x
=
x
.
transpose
(
0
,
1
)
# x = self.in_norm(x)
if
self
.
reduced_way
==
"proj"
:
x
=
x
.
transpose
(
0
,
1
)
.
contiguous
()
.
view
(
bsz
,
int
(
seq_len
/
2
),
-
1
)
x
=
self
.
proj
(
self
.
norm
(
x
))
x
=
x
.
transpose
(
0
,
1
)
x
=
x
.
permute
(
1
,
2
,
0
)
# bsz, dim, seq_len
x
=
nn
.
functional
.
adaptive_avg_pool1d
(
x
,
int
(
seq_len
//
self
.
stride
))
x
=
self
.
conv
(
self
.
in_norm
(
x
))
x
=
x
.
permute
(
2
,
0
,
1
)
# seq_len, bsz, dim
else
:
x
=
x
.
permute
(
1
,
2
,
0
)
# B * D * T
origin_x
=
x
x
=
self
.
conv
(
x
)
if
self
.
reduced_way
==
"glu"
:
x
=
self
.
glu
(
x
)
if
self
.
reduced_way
==
"fuse"
:
x2
=
nn
.
functional
.
adaptive_avg_pool1d
(
origin_x
,
int
(
seq_len
//
self
.
stride
))
x2
=
self
.
conv_proj
(
self
.
in_norm
(
x2
))
x
=
x
+
x2
x
=
x
.
permute
(
2
,
0
,
1
)
# T * B * D
if
self
.
embed_norm
:
x
=
self
.
norm
(
x
)
...
...
@@ -182,7 +191,7 @@ class PYS2TTransformerModel(S2TTransformerModel):
parser
.
add_argument
(
"--pyramid-reduced-embed"
,
type
=
str
,
choices
=
[
"glu"
,
"conv"
,
"proj"
],
choices
=
[
"glu"
,
"conv"
,
"proj"
,
"fuse"
],
help
=
"the reduced way of the embedding"
,
)
parser
.
add_argument
(
...
...
@@ -285,12 +294,16 @@ class PyS2TTransformerEncoder(FairseqEncoder):
for
i
in
range
(
self
.
pyramid_stages
):
num_layers
=
self
.
pyramid_layers
[
i
]
sr_ratio
=
self
.
pyramid_sr_ratios
[
i
]
attn_sample_ratio
=
self
.
pyramid_attn_sample_ratios
[
i
]
attn_sample_ratio
=
self
.
pyramid_attn_sample_ratios
[
i
]
if
self
.
attn_type
==
"reduced"
else
-
1
embed_dim
=
self
.
pyramid_embed_dims
[
i
]
kernel_size
=
self
.
pyramid_kernel_sizes
[
i
]
ffn_ratio
=
self
.
pyramid_ffn_ratios
[
i
]
num_head
=
self
.
pyramid_heads
[
i
]
use_pos_embed
=
self
.
pyramid_position_embed
[
i
]
logger
.
info
(
"The stage {}: layer {}, sample ratio {}, attention sample ratio {}, embed dim {}, "
"kernel size {}, ffn ratio {}, num head {}, position embed {}"
.
format
(
i
,
num_layers
,
sr_ratio
,
attn_sample_ratio
,
embed_dim
,
kernel_size
,
ffn_ratio
,
num_head
,
use_pos_embed
))
if
i
==
0
:
self
.
embed_scale
=
math
.
sqrt
(
embed_dim
)
...
...
@@ -300,12 +313,11 @@ class PyS2TTransformerEncoder(FairseqEncoder):
reduced_embed
=
ReducedEmbed
(
self
.
pyramid_reduced_embed
,
self
.
pyramid_embed_norm
,
# self.pyramid_embed_norm if i != 0 else False,
args
.
input_feat_per_channel
*
args
.
input_channels
if
i
==
0
else
self
.
pyramid_embed_dims
[
i
-
1
],
embed_dim
,
kernel_sizes
=
kernel_size
,
stride
=
sr_ratio
,
padding
=
kernel_size
//
2
,
padding
=
(
kernel_size
-
1
)
//
2
,
)
if
use_pos_embed
:
pos_embed
=
PositionalEmbedding
(
...
...
@@ -327,13 +339,16 @@ class PyS2TTransformerEncoder(FairseqEncoder):
if
self
.
use_ppm
:
ppm_layer_norm
=
LayerNorm
(
embed_dim
)
ppm_layer_norm2
=
LayerNorm
(
self
.
embed_dim
)
ppm
=
nn
.
Sequential
(
nn
.
Conv1d
(
embed_dim
,
self
.
embed_dim
,
kernel_size
=
1
,
bias
=
False
),
nn
.
BatchNorm1d
(
self
.
embed_dim
),
nn
.
ReLU
(),
)
else
:
ppm_layer_norm
=
None
ppm_layer_norm2
=
None
ppm
=
None
setattr
(
self
,
f
"reduced_embed{i + 1}"
,
reduced_embed
)
...
...
@@ -342,12 +357,12 @@ class PyS2TTransformerEncoder(FairseqEncoder):
setattr
(
self
,
f
"block_attn{i + 1}"
,
block_attn
)
setattr
(
self
,
f
"ppm{i + 1}"
,
ppm
)
setattr
(
self
,
f
"ppm_layer_norm{i + 1}"
,
ppm_layer_norm
)
setattr
(
self
,
f
"ppm_layer_norm2{i + 1}"
,
ppm_layer_norm2
)
if
i
==
self
.
pyramid_stages
-
1
:
if
args
.
encoder_normalize_before
:
self
.
layer_norm
=
LayerNorm
(
embed_dim
)
else
:
self
.
layer_norm
=
None
if
args
.
encoder_normalize_before
:
self
.
layer_norm
=
LayerNorm
(
self
.
embed_dim
)
else
:
self
.
layer_norm
=
None
if
self
.
use_ppm
:
self
.
ppm_weight
=
nn
.
Parameter
(
torch
.
Tensor
(
self
.
pyramid_stages
)
.
fill_
(
1.0
))
...
...
@@ -442,21 +457,25 @@ class PyS2TTransformerEncoder(FairseqEncoder):
x
=
block_attn
(
x
,
prev_state
[
-
1
],
prev_padding
[
-
1
])
if
self
.
use_ppm
:
pool_state
=
[
x
]
pool_state
=
[]
seq_len
,
bsz
,
dim
=
x
.
size
()
i
=
-
1
for
state
in
prev_state
[:
-
1
]
:
for
state
in
prev_state
:
i
+=
1
ppm
=
getattr
(
self
,
f
"ppm{i + 1}"
)
ppm_layer_norm
=
getattr
(
self
,
f
"ppm_layer_norm{i + 1}"
)
ppm_layer_norm2
=
getattr
(
self
,
f
"ppm_layer_norm2{i + 1}"
)
state
=
ppm_layer_norm
(
state
)
state
=
state
.
permute
(
1
,
2
,
0
)
state
=
nn
.
functional
.
adaptive_avg_pool1d
(
state
,
seq_len
)
state
=
state
.
permute
(
1
,
2
,
0
)
# bsz, dim, seq_len
if
i
!=
self
.
pyramid_stages
-
1
:
state
=
nn
.
functional
.
adaptive_avg_pool1d
(
state
,
seq_len
)
state
=
ppm
(
state
)
state
=
state
.
permute
(
2
,
0
,
1
)
state
=
ppm_layer_norm2
(
state
)
pool_state
.
append
(
state
)
x
=
(
torch
.
stack
(
pool_state
,
dim
=
0
)
*
self
.
ppm_weight
.
view
(
-
1
,
1
,
1
,
1
))
.
sum
(
0
)
ppm_weight
=
self
.
ppm_weight
x
=
(
torch
.
stack
(
pool_state
,
dim
=
0
)
*
ppm_weight
.
view
(
-
1
,
1
,
1
,
1
))
.
sum
(
0
)
if
self
.
layer_norm
is
not
None
:
x
=
self
.
layer_norm
(
x
)
...
...
fairseq/modules/rel_position_multihead_attention.py
查看文件 @
f0605efa
...
...
@@ -128,7 +128,6 @@ class RelPositionMultiheadAttention(MultiheadAttention):
else
:
k
=
self
.
k_proj
(
key
)
v
=
self
.
v_proj
(
key
)
else
:
assert
key
is
not
None
and
value
is
not
None
q
=
self
.
q_proj
(
query
)
...
...
@@ -301,7 +300,7 @@ class RelPositionMultiheadAttention(MultiheadAttention):
x
=
x
*
torch
.
tril
(
ones
,
x
.
size
(
2
)
-
x
.
size
(
1
))[
None
,
:,
:]
return
x
#
matrix_bd = rel_shift(matrix_bd)
matrix_bd
=
rel_shift
(
matrix_bd
)
attn_weights
=
(
matrix_ac
+
matrix_bd
)
*
self
.
scaling
...
...
@@ -456,7 +455,7 @@ class RelPositionMultiheadAttention(MultiheadAttention):
dim
=
int
(
state_dict
[
k
]
.
shape
[
0
]
/
3
)
items_to_add
[
prefix
+
"q_proj.bias"
]
=
state_dict
[
k_bias
][:
dim
]
items_to_add
[
prefix
+
"k_proj.bias"
]
=
state_dict
[
k_bias
][
dim
:
2
*
dim
dim
:
2
*
dim
]
items_to_add
[
prefix
+
"v_proj.bias"
]
=
state_dict
[
k_bias
][
2
*
dim
:]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论