Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
Emmay
NiuTrans.Tensor
Commits
2ab2afc9
Commit
2ab2afc9
authored
Dec 27, 2018
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add a makefile and correct the problem
parent
07efb5de
隐藏空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
217 行增加
和
0 行删除
+217
-0
Makefile
+196
-0
source/network/XBackwardData.cpp
+21
-0
没有找到文件。
Makefile
0 → 100644
查看文件 @
2ab2afc9
# the prefix of the generated executable file
PREFIX
:=
niutrans
TENSOR
:=
$(PREFIX)
.tensor
NETWORK
:=
$(PREFIX)
.network
# code path
SRC
=
./source
# use gpu ?
USE_CUDA
=
1
# modify this path if neccessary
CUDA_ROOT
=
/usr/local/cuda-9.0
CUDA_LIB_DIR
=
$(CUDA_ROOT)
/lib64
CUDA_INCLUDE
=
$(CUDA_ROOT)
/include
# use MKL
USE_MKL
=
0
INTEL_ROOT
=
/opt/intel
MKL_ROOT
=
/opt/intel/mkl
MKL_LIB_DIR
=
$(MKL_ROOT)
/lib/intel64/
MKL_INCLUDE
=
$(MKL_ROOT)
/include
# use OpenBLAS
USE_OPENBLAS
=
0
OPENBLAS_ROOT
=
/opt/OpenBLAS
OPENBLAS_LIB_DIR
=
$(OPENBLAS_ROOT)
/lib
OPENBLAS_INCLUDE
=
$(OPENBLAS_ROOT)
/include
SRC_DIR
=
$(
shell
find
$(SRC)
-type
d
)
# included header files directory
# depended outside library files directory
INC_DIR
=
$(SRC_DIR)
DEPLIB_DIR
=
ifeq
($(USE_CUDA),
1)
INC_DIR
+=
$(CUDA_INCLUDE)
DEPLIB_DIR
+=
$(CUDA_LIB_DIR)
endif
ifeq
($(USE_MKL),
1)
INC_DIR
+=
$(MKL_INCLUDE)
DEPLIB_DIR
+=
$(MKL_LIB_DIR)
endif
ifeq
($(USE_OPENBLAS),
1)
INC_DIR
+=
$(OPENBLAS_INCLUDE)
DEPLIB_DIR
+=
$(OPENBLAS_LIB_DIR)
endif
# macro
MACRO
=
ifeq
($(USE_CUDA),
1)
MACRO
+=
-DUSE_CUDA
endif
ifeq
($(USE_MKL),
1)
MACRO
+=
-DUSE_BLAS
-DMKL
endif
ifeq
($(USE_OPENBLAS),
1)
MACRO
+=
-DUSE_BLAS
-DOPENBLAS
endif
# dependency
STATIC_DEPLIB
=
DYNAMIC_DEPLIB
=
-lpthread
ifeq
($(USE_MKL),
1)
STATIC_DEPLIB
+=
$(MKL_LIB_DIR)
/libmkl_intel_lp64.a
\
$(MKL_LIB_DIR)
/libmkl_core.a
\
$(MKL_LIB_DIR)
/libmkl_intel_thread.a
\
$(INTEL_ROOT)
/lib/intel64/libiomp5.a
#DYNAMIC_DEPLIB += -liomp5 -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core
endif
ifeq
($(USE_OPENBLAS),
1)
STATIC_DEPLIB
+=
$(OPENBLAS_LIB_DIR)
/libopenblas.a
DYNAMIC_DEPLIB
+=
-lopenblas
endif
ifeq
($(USE_CUDA),
1)
STATIC_DEPLIB
+=
$(CUDA_LIB_DIR)
/libcublas_static.a
\
$(CUDA_LIB_DIR)
/libculibos.a
\
$(CUDA_LIB_DIR)
/libnpps_static.a
\
$(CUDA_LIB_DIR)
/libnppc_static.a
\
$(CUDA_LIB_DIR)
/libcudadevrt.a
\
$(CUDA_LIB_DIR)
/libcurand_static.a
\
/lib64/libdl.so.2
DYNAMIC_DEPLIB
+=
-lcudart
-lnvidia-ml
endif
DEPLIBS
=
-Wl
,--start-group
$(STATIC_DEPLIB)
-Wl
,--end-group
-lm
-ldl
$(DYNAMIC_DEPLIB)
# specify the compilers here
CC
=
gcc
CXX
=
g++
NVCC
=
$(CUDA_ROOT)
/bin/nvcc
ifeq
($(USE_INTEL_COMPILER),
1)
CC
=
icc
CXX
=
icc
endif
# main file
MAIN_FILE
=
Main.cpp
Tensor_Main
:=
$(SRC)
/tensor/
$(MAIN_FILE)
Network_Main
:=
$(SRC)
/network/
$(MAIN_FILE)
TENSOR_CPU
:=
$(TENSOR)
.cpu
TENSOR_GPU
:=
$(TENSOR)
.gpu
NETWORK_CPU
:=
$(NETWORK)
.cpu
NETWORK_GPU
:=
$(NETWORK)
.gpu
ifeq
($(USE_CUDA),
1)
TENSOR
:=
$(TENSOR_GPU)
NETWORK
:=
$(NETWORK_GPU)
else
TENSOR
:=
$(TENSOR_CPU)
NETWORK
:=
$(NETWORK_CPU)
endif
# specify the compiling arguments here
CFLAGS
=
-msse4
.2
-w
-march
=
native
-Wno-enum-compare
-Wno-sign-compare
-Wno-reorder
-Wno-format
# gtx 1080 arch=compute_61,code=sm_61
# k80 arch=compute_37,code=sm_37
# if we set wrong, the result can be `-inf`
CUDA_FLAG
=
-arch
=
sm_30
\
-gencode
=
arch
=
compute_30,code
=
sm_30
\
-gencode
=
arch
=
compute_50,code
=
sm_50
\
-gencode
=
arch
=
compute_52,code
=
sm_52
\
-gencode
=
arch
=
compute_60,code
=
sm_60
\
-gencode
=
arch
=
compute_61,code
=
sm_61
\
-gencode
=
arch
=
compute_62,code
=
sm_62
\
-gencode
=
arch
=
compute_70,code
=
sm_70
\
-gencode
=
arch
=
compute_70,code
=
compute_70
\
-maxrregcount
=
0
--machine
64
-DUSE_CUDA
--use_fast_math
CFLAGS
+=
-O3
-flto
-DNDEBUG
-rdynamic
-fkeep-inline-functions
# include dir
CFLAGS
+=
-fPIC
$
(
addprefix
-I
,
$(INC_DIR)
)
# CUDA_FLAG += $(addprefix -I, $(INC_DIR))
CXXFLAGS
=
$(CFLAGS)
# lib dir
LDFLAGS
=
$
(
addprefix
-L
,
$(DEPLIB_DIR)
)
# decoder source file
ifeq
($(USE_CUDA),
1)
SOURCES
:=
$
(
foreach dir,
$(SRC_DIR)
,
$
(
wildcard
$(dir)
/
*
.c
)
$
(
wildcard
$(dir)
/
*
.cpp
)
$
(
wildcard
$(dir)
/
*
.cc
)
$
(
wildcard
$(dir)
/
*
.cu
))
else
SOURCES
:=
$
(
foreach dir,
$(SRC_DIR)
,
$
(
wildcard
$(dir)
/
*
.c
)
$
(
wildcard
$(dir)
/
*
.cpp
)
$
(
wildcard
$(dir)
/
*
.cc
)
)
endif
SOURCES
:=
$
(
subst
$(Tensor_Main)
, ,
$(SOURCES)
)
SOURCES
:=
$
(
subst
$(Network_Main)
, ,
$(SOURCES)
)
# object file
OBJS
:=
$
(
patsubst %.c,%.o,
$(SOURCES)
)
OBJS
:=
$
(
patsubst %.cpp,%.o,
$(OBJS)
)
ifeq
($(USE_CUDA),
1)
OBJS
:=
$
(
patsubst %.cu,%.cuo,
$(OBJS)
)
endif
all
:
start tensor network finish
tensor
:
$(TENSOR)
network
:
$(NETWORK)
$(TENSOR)
:
$(OBJS) $(Tensor_Main)
@
echo
"Making executable file:
$(TENSOR)
"
@
$(CXX)
$(Tensor_Main)
$(CXXFLAGS)
$(MACRO)
$(LDFLAGS)
$(OBJS)
$(DEPLIBS)
-o
$@
$(NETWORK)
:
$(OBJS) $(Network_Main)
@
echo
"Making executable file:
$(NETWORK)
"
@
$(CXX)
$(Network_Main)
$(CXXFLAGS)
$(MACRO)
$(LDFLAGS)
$(OBJS)
$(DEPLIBS)
-o
$@
start
:
@
echo
""
@
echo
"Start Making ..."
finish
:
@
echo
"finish Making ..."
@
echo
""
%.o
:
%.c
@
$(CC)
$(CFLAGS)
-c
$<
-o
$@
%.o
:
%.cpp
@
$(CXX)
$(CXXFLAGS)
$(MACRO)
-c
$<
-o
$@
%.cuo
:
%.cu
@
$(NVCC)
$(CUDA_FLAG)
-c
$<
-o
$@
.PHONY
:
clean
clean
:
@
echo
"Making clean object files"
@
-rm
-f
$(OBJS)
cleanexe
:
@
echo
"Making clean executable files"
@
-rm
-f
$(TENSOR_CPU)
$(NETWORK_CPU)
$(TENSOR_GPU)
$(NETWORK_GPU)
\ No newline at end of file
source/network/XBackwardData.cpp
查看文件 @
2ab2afc9
...
...
@@ -86,6 +86,27 @@ dE/da = IndexToOnehot(b)
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XDataGrad
::
GradOnehotToIndex
(
XTensor
*
node
,
bool
isEfficent
)
{
XLink
&
income
=
node
->
income
;
CheckNTErrors
(
income
.
tailNum
>
0
,
"Wrong input tensor number for IndexToOnehot!"
);
XTensor
*
input
=
income
.
tails
[
0
];
XNoder
::
MakeGrad
(
input
);
}
/*
gradient computation for IndexToOnehot
for
b = IndexToOnehot(a)
we have
dE/da = IndexToOnehot(b)
>> node - the node (c) for backward computation
>> isEfficient - indicates whether the computation is in
an efficient manner
*/
void
XDataGrad
::
GradIndexToOnehot
(
XTensor
*
node
,
bool
isEfficent
)
{
XLink
&
income
=
node
->
income
;
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论