Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
Emmay
NiuTrans.Tensor
Commits
f21e1b48
Commit
f21e1b48
authored
Aug 03, 2018
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
work on the triaining processing on t2t lm
parent
5cd1be65
隐藏空白字符变更
内嵌
并排
正在显示
24 个修改的文件
包含
250 行增加
和
64 行删除
+250
-64
source/network/Main.cpp
+6
-3
source/network/XBackwardMath.cpp
+2
-2
source/network/XNet.cpp
+2
-1
source/sample/transformer/T2TAttention.cpp
+6
-5
source/sample/transformer/T2TEmbedding.cpp
+12
-17
source/sample/transformer/T2TEmbedding.h
+2
-0
source/sample/transformer/T2TFNN.cpp
+4
-3
source/sample/transformer/T2TLayerNormal.cpp
+27
-1
source/sample/transformer/T2TOutput.cpp
+5
-3
source/sample/transformer/T2TTrainer.cpp
+24
-12
source/sample/transformer/T2TTrainer.h
+4
-1
source/sample/transformer/T2TUtility.cpp
+23
-6
source/sample/transformer/T2TUtility.h
+5
-1
source/sample/transformer/Transformer.cpp
+24
-0
source/sample/transformer/Transformer.h
+1
-1
source/tensor/XTensor.cpp
+18
-4
source/tensor/XTensor.h
+6
-0
source/tensor/core/arithmetic/MatrixMul.cpp
+0
-2
source/tensor/core/arithmetic/MatrixMulBatched.cpp
+56
-0
source/tensor/core/arithmetic/MatrixMulBatched.h
+12
-0
source/tensor/core/movement/CopyValues.cpp
+2
-2
source/tensor/core/shape/Split.cpp
+2
-0
source/tensor/function/LogSoftmax.cpp
+3
-0
source/tensor/function/Softmax.cpp
+4
-0
没有找到文件。
source/network/Main.cpp
查看文件 @
f21e1b48
...
...
@@ -25,6 +25,7 @@
#include "../tensor/function/FHeader.h"
#include "../tensor/core/CHeader.h"
#include "../sample/fnnlm/FNNLM.h"
#include "../sample/transformer/Transformer.h"
//#define CRTDBG_MAP_ALLOC
//#include <stdlib.h>
...
...
@@ -35,6 +36,7 @@ void SumDimTest();
using
namespace
nts
;
using
namespace
fnnlm
;
using
namespace
transformer
;
int
main
(
int
argc
,
const
char
**
argv
)
{
...
...
@@ -44,10 +46,11 @@ int main( int argc, const char ** argv )
//SumDimTest();
//return 0;
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-test"
))
1
;
//Test();
else
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-fnnlm"
))
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-fnnlm"
))
FNNLMMain
(
argc
-
1
,
argv
+
1
);
else
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-t2t"
))
TransformerMain
(
argc
-
1
,
argv
+
1
);
else
{
fprintf
(
stderr
,
"Thanks for using NiuTrans.Network! This is a library for building
\n
"
);
fprintf
(
stderr
,
"neural networks in an easy way.
\n\n
"
);
...
...
source/network/XBackwardMath.cpp
查看文件 @
f21e1b48
...
...
@@ -614,7 +614,7 @@ void XMathGrad::GradNormalize(XTensor * node)
XTensor
*
p
=
NewTensor
(
a
);
XTensor
*
q
=
NewTensor
(
a
);
XTensor
*
r
=
NewTensor
(
a
);
DTYPE
epsilon
=
income
.
GetParam
Int
(
0
);
DTYPE
epsilon
=
income
.
GetParam
(
0
);
int
dim
=
income
.
GetParamInt
(
0
);
int
n
=
a
->
GetDim
(
dim
);
...
...
@@ -742,7 +742,7 @@ void XMathGrad::GradReduceMean(XTensor * node)
XNoder
::
MakeGrad
(
a
);
_Unsqueeze
(
node
->
grad
,
b
,
dim
,
n
);
_ScaleAndShift
(
b
,
c
,
1
/
n
);
_ScaleAndShift
(
b
,
c
,
1
.0
F
/
n
);
_Sum
(
a
->
grad
,
c
,
a
->
grad
);
node
->
visitMark
=
NODE_FINISHED
;
...
...
source/network/XNet.cpp
查看文件 @
f21e1b48
...
...
@@ -258,10 +258,11 @@ void XNet::TarjanVisit(XTensor * node, XList &orders, const unsigned int code)
if
(
node
==
NULL
)
return
;
//fprintf(stderr, "%d\n", node->id);
if
(
node
->
visitMark
==
code
+
1
){
ShowNTErrors
(
"There is a circle in the network
\n
"
);
}
else
if
(
node
->
visitMark
<=
code
||
node
->
visitMark
>=
code
+
2
){
else
if
(
node
->
visitMark
<=
code
){
node
->
visitMark
=
code
+
1
;
XLink
&
income
=
node
->
income
;
for
(
int
i
=
0
;
i
<
income
.
tailNum
;
i
++
){
...
...
source/sample/transformer/T2TAttention.cpp
查看文件 @
f21e1b48
...
...
@@ -22,6 +22,7 @@
#include <math.h>
#include "T2TAttention.h"
#include "T2TUtility.h"
#include "T2TEmbedding.h"
#include "../../tensor/core/CHeader.h"
namespace
transformer
...
...
@@ -56,9 +57,9 @@ void T2TAttention::InitModel(int argc, const char ** argv, int myDevID, XMem * m
float
minmax
=
0
;
LoadParamInt
(
argc
,
argv
,
"nhead"
,
&
nhead
,
8
);
LoadParamInt
(
argc
,
argv
,
"d
k"
,
&
dk
,
512
);
LoadParamInt
(
argc
,
argv
,
"d
v"
,
&
dv
,
512
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
d
,
512
);
LoadParamInt
(
argc
,
argv
,
"d
"
,
&
dk
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"d
"
,
&
dv
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
d
,
DEFAULT_BEDDING_SIZE
);
LoadParamFloat
(
argc
,
argv
,
"attminmax"
,
&
minmax
,
0.08
F
);
InitTensor2D
(
&
wk
,
d
,
dk
,
X_FLOAT
,
devID
,
mem
);
...
...
@@ -104,12 +105,12 @@ XTensor * T2TAttention::Make(XTensor * k, XTensor * q, XTensor * v)
/* scalar = softmax(Q * K^T / sqrt(dk)) * V */
scalar
=
Softmax
(
Linear
(
BMMul
(
qheads
,
X_NOTRANS
,
kheads
,
X_TRANS
),
1
/
sqrt
((
float
)
dk
)),
-
1
);
att
=
MMul
(
scalar
,
vheads
);
att
=
B
MMul
(
scalar
,
vheads
);
XTensor
*
result
=
new
XTensor
();
/* concatenate the heads */
*
result
=
Merge
(
att
,
-
1
);
*
result
=
Merge
(
att
,
att
.
order
-
1
);
return
result
;
}
...
...
source/sample/transformer/T2TEmbedding.cpp
查看文件 @
f21e1b48
...
...
@@ -57,7 +57,8 @@ void T2TEmbedder::InitModel(int argc, const char ** argv, int myDevID, XMem * my
LoadParamInt
(
argc
,
argv
,
"vsize"
,
&
vSize
,
-
1
);
LoadParamInt
(
argc
,
argv
,
"maxlen"
,
&
maxLength
,
256
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
d
,
256
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
eSize
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
d
,
DEFAULT_BEDDING_SIZE
);
InitTensor2D
(
&
w
,
vSize
,
eSize
,
X_FLOAT
,
devID
,
mem
);
...
...
@@ -74,9 +75,9 @@ length - length of the sequenc
*/
void
T2TEmbedder
::
MakePosEmbedding
(
int
eSize
,
int
d
,
int
length
)
{
InitTensor2D
(
&
posEmbedding
,
length
,
eSize
,
X_FLOAT
,
devID
,
mem
);
InitTensor2D
(
&
posEmbedding
Base
,
length
,
eSize
,
X_FLOAT
,
devID
,
mem
);
float
*
data
=
new
float
[
posEmbedding
.
unitNum
];
float
*
data
=
new
float
[
posEmbedding
Base
.
unitNum
];
for
(
int
pos
=
0
;
pos
<
length
;
pos
++
){
float
*
dp
=
data
+
pos
*
eSize
;
...
...
@@ -92,7 +93,7 @@ void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length)
}
}
posEmbedding
.
SetData
(
data
,
posEmbedding
.
unitNum
);
posEmbedding
Base
.
SetData
(
data
,
posEmbeddingBase
.
unitNum
);
delete
[]
data
;
}
...
...
@@ -105,11 +106,12 @@ XTensor * T2TEmbedder::Make(XTensor * input)
CheckNTErrors
(
input
->
GetDim
(
-
1
)
==
vSize
,
"Wrong vocabulary size!"
);
CheckNTErrors
(
input
->
order
>
1
,
"Wrong input tensor size!"
);
CheckNTErrors
(
input
->
dimSize
[
input
->
order
-
2
]
<
maxLength
,
"The sequence is too long!"
);
CheckNTErrors
(
vSize
>
0
,
"set vocabulary size by
\"
-vsize
\"
"
);
CheckNTErrors
(
eSize
>
0
,
"set embedding size by
\"
-esize
\"
"
);
int
dims
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dims
,
input
->
dimSize
,
input
->
order
);
dims
[
0
]
=
eSize
;
memcpy
(
dims
,
input
->
dimSize
,
input
->
order
*
sizeof
(
int
)
);
dims
[
input
->
order
-
1
]
=
eSize
;
bool
match
=
(
posEmbedding
.
order
==
input
->
order
);
if
(
match
){
...
...
@@ -122,17 +124,10 @@ XTensor * T2TEmbedder::Make(XTensor * input)
/* we make positional embeddings first */
if
(
!
match
){
InitTensor
(
&
posEmbedding
,
input
->
order
,
dims
,
X_FLOAT
,
1.0
F
,
devID
,
mem
);
XTensor
*
posTMP
=
NewTensorBuf
(
2
,
dims
,
X_FLOAT
,
1.0
F
,
devID
,
mem
);
_CopyValues
(
&
posEmbeddingBase
,
0
,
posTMP
->
unitNum
,
posTMP
,
0
);
XTensor
*
posTMP
=
NewTensorBuf
(
2
,
dims
+
1
,
X_FLOAT
,
1.0
F
,
devID
,
mem
);
int
dims2
[
MAX_TENSOR_DIM_NUM
];
dims2
[
0
]
=
dims
[
0
];
dims2
[
1
]
=
dims
[
1
];
dims2
[
2
]
=
posEmbedding
.
unitNum
/
(
dims
[
0
]
*
dims
[
1
]);
posEmbedding
.
Reshape
(
3
,
dims2
);
_Unsqueeze
(
posTMP
,
&
posEmbedding
,
0
,
dims2
[
2
]);
posEmbedding
.
Reshape
(
input
->
order
,
dims
);
_CopyValues
(
&
posEmbeddingBase
,
0
,
posTMP
->
unitNum
,
posTMP
,
0
);
_Unsqueeze
(
posTMP
,
&
posEmbedding
,
0
,
dims
[
0
]);
DelTensorBuf
(
posTMP
);
}
...
...
source/sample/transformer/T2TEmbedding.h
查看文件 @
f21e1b48
...
...
@@ -29,6 +29,8 @@ using namespace nts;
namespace
transformer
{
#define DEFAULT_BEDDING_SIZE 512
/*
embedding (of word at position i):
word embedding + positional embedding
...
...
source/sample/transformer/T2TFNN.cpp
查看文件 @
f21e1b48
...
...
@@ -21,6 +21,7 @@
#include "T2TFNN.h"
#include "T2TUtility.h"
#include "T2TEmbedding.h"
#include "../../tensor/core/CHeader.h"
#include "../../tensor/function/FHeader.h"
...
...
@@ -54,9 +55,9 @@ void T2TFNN::InitModel(int argc, const char ** argv, int myDevID, XMem * myMem)
float
minmax
=
0
;
LoadParamInt
(
argc
,
argv
,
"d"
,
&
inSize
,
512
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
outSize
,
512
);
LoadParamInt
(
argc
,
argv
,
"fnnh"
,
&
hSize
,
512
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
inSize
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
outSize
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"fnnh"
,
&
hSize
,
DEFAULT_BEDDING_SIZE
);
LoadParamFloat
(
argc
,
argv
,
"fnnminmax"
,
&
minmax
,
0.08
F
);
InitTensor2D
(
&
w1
,
inSize
,
hSize
,
X_FLOAT
,
devID
,
mem
);
...
...
source/sample/transformer/T2TLayerNormal.cpp
查看文件 @
f21e1b48
...
...
@@ -20,6 +20,7 @@
*/
#include "T2TLayerNormal.h"
#include "../../tensor/core/CHeader.h"
namespace
transformer
{
...
...
@@ -58,7 +59,32 @@ y =
*/
XTensor
*
T2TLN
::
Make
(
XTensor
*
input
)
{
return
NULL
;
XTensor
&
x
=
*
input
;
XTensor
mean
;
XTensor
variance
;
XTensor
standard
;
XTensor
meanFilled
;
XTensor
standardFilled
;
XTensor
*
result
=
new
XTensor
();
/* \mu = (sum_i x_i)/m */
mean
=
ReduceSum
(
x
,
x
.
order
-
1
);
/* \sigma = (sum_i (x_i - \mu)^2)/m */
variance
=
ReduceVariance
(
x
,
x
.
order
-
1
,
mean
);
/* standard = sqrt(variance) */
standard
=
Power
(
variance
,
0.5
F
);
/* unsqueeze mean and standard deviation to fit them into
the same size of x */
meanFilled
=
Unsqueeze
(
mean
,
x
.
order
-
1
,
x
.
GetDim
(
-
1
));
standardFilled
=
Unsqueeze
(
standard
,
x
.
order
-
1
,
x
.
GetDim
(
-
1
));
/* x' = (x - \mu)/standard */
*
result
=
(
x
-
meanFilled
)
/
standardFilled
;
return
result
;
}
}
source/sample/transformer/T2TOutput.cpp
查看文件 @
f21e1b48
...
...
@@ -21,6 +21,7 @@
#include "T2TOutput.h"
#include "T2TUtility.h"
#include "T2TEmbedding.h"
#include "../../tensor/core/CHeader.h"
namespace
transformer
...
...
@@ -53,10 +54,11 @@ void T2TOutput::InitModel(int argc, const char ** argv, int myDevID, XMem * myMe
mem
=
myMem
;
LoadParamInt
(
argc
,
argv
,
"vsize"
,
&
vSize
,
-
1
);
LoadParamInt
(
argc
,
argv
,
"hsize"
,
&
inSize
,
512
);
LoadParamInt
(
argc
,
argv
,
"hsize"
,
&
hSize
,
512
);
}
LoadParamInt
(
argc
,
argv
,
"d"
,
&
inSize
,
DEFAULT_BEDDING_SIZE
);
LoadParamInt
(
argc
,
argv
,
"d"
,
&
hSize
,
DEFAULT_BEDDING_SIZE
);
InitTensor2D
(
&
w
,
hSize
,
vSize
,
X_FLOAT
,
devID
,
mem
);
}
/*
make the network
...
...
source/sample/transformer/T2TTrainer.cpp
查看文件 @
f21e1b48
...
...
@@ -31,6 +31,8 @@ namespace transformer
/* constructor */
T2TTrainer
::
T2TTrainer
()
{
devID
=
-
1
;
mem
=
NULL
;
seqLen
=
NULL
;
nseqBuf
=
0
;
nextSeq
=
-
1
;
...
...
@@ -50,18 +52,19 @@ initialization
*/
void
T2TTrainer
::
Init
(
int
argc
,
const
char
**
argv
)
{
LoadParamInt
(
argc
,
argv
,
"dev"
,
&
devID
,
-
1
);
LoadParamFloat
(
argc
,
argv
,
"lrate"
,
&
lrate
,
0.001
F
);
LoadParamInt
(
argc
,
argv
,
"sbatch"
,
&
sBatchSize
,
1
);
LoadParamInt
(
argc
,
argv
,
"wbatch"
,
&
wBatchSize
,
1
);
LoadParamInt
(
argc
,
argv
,
"nepoch"
,
&
nepoch
,
1
);
LoadParamInt
(
argc
,
argv
,
"nstep"
,
&
nstep
,
1
);
LoadParamInt
(
argc
,
argv
,
"vsize"
,
&
vSize
,
1
);
LoadParamBool
(
argc
,
argv
,
"sorted"
,
&
isLenSorted
,
false
);
LoadParamInt
(
argc
,
argv
,
"bufsize"
,
&
bufSize
,
50000
);
int
maxUnitInBuf
;
LoadParamInt
(
argc
,
argv
,
"bufsize"
,
&
maxUnitInBuf
,
20000
);
buf
=
new
int
[
maxUnitInBuf
];
seqLen
=
new
int
[
maxUnitInBuf
];
seqOffset
=
new
int
[
maxUnitInBuf
];
buf
=
new
int
[
bufSize
];
seqLen
=
new
int
[
bufSize
];
seqOffset
=
new
int
[
bufSize
];
}
/*
...
...
@@ -78,6 +81,8 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
int
wordCountTotal
=
0
;
bool
isEnd
=
false
;
float
loss
=
0
;
XNet
net
;
double
startT
=
GetClockSec
();
...
...
@@ -98,6 +103,9 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
/* make the network */
model
->
Make
(
&
batch
,
&
output
);
/* back-propagation for obtaining gradients */
net
.
Backward
(
output
,
batch
,
CROSSENTROPY
);
/* TODO: update the model!!!! */
...
...
@@ -188,7 +196,7 @@ int T2TTrainer::LoadBuf(FILE * file)
wordCount
+=
wNum
;
lineCount
++
;
if
(
wordCount
>=
wBatchSize
||
lineCount
>=
sBatchSize
)
if
(
wordCount
>=
bufSize
-
MAX_SEQUENCE_LENGTH
)
break
;
}
...
...
@@ -211,24 +219,28 @@ load a batch of sequences
*/
int
T2TTrainer
::
LoadBatch
(
FILE
*
file
,
XTensor
*
batch
,
int
step
,
int
vs
,
int
sBatch
,
int
wBatch
,
bool
isSorted
,
int
&
wCount
)
{
if
(
nextSeq
>=
nseqBuf
)
if
(
nextSeq
<
0
||
nextSeq
>=
nseqBuf
)
LoadBuf
(
file
);
int
seq
=
nextSeq
;
int
seq
=
MAX
(
nextSeq
,
0
)
;
int
wc
=
0
;
int
wn
=
0
;
int
sc
=
0
;
int
max
=
0
;
while
(
seq
<
nseqBuf
){
wc
+=
seqLen
[
seq
];
while
(
seq
+
sc
<
nseqBuf
){
wn
=
seqLen
[
seq
+
sc
];
wc
+=
wn
;
sc
+=
1
;
if
(
max
<
w
c
)
max
=
w
c
;
if
(
max
<
w
n
)
max
=
w
n
;
if
(
sc
>=
sBatch
&&
wc
>=
wBatch
)
break
;
}
nextSeq
=
seq
+
sc
;
if
(
sc
>
0
){
int
dims
[
MAX_TENSOR_DIM_NUM
];
dims
[
0
]
=
sc
;
...
...
source/sample/transformer/T2TTrainer.h
查看文件 @
f21e1b48
...
...
@@ -26,7 +26,7 @@
#include "../../tensor/function/FHeader.h"
#define MAX_SEQUENCE_LENGTH 1024 *
6
4
#define MAX_SEQUENCE_LENGTH 1024 * 4
using
namespace
nts
;
...
...
@@ -46,6 +46,9 @@ public:
/* buffer for loading words */
int
*
buf
;
/* buffer size */
int
bufSize
;
/* length of each sequence */
int
*
seqLen
;
...
...
source/sample/transformer/T2TUtility.cpp
查看文件 @
f21e1b48
...
...
@@ -34,8 +34,8 @@ void LoadParamString(int argc, const char ** argv, const char * name, char * p,
bool
hit
=
false
;
for
(
int
i
=
0
;
i
<
argc
;
i
++
){
if
(
!
strcmp
(
argv
[
i
],
vname
)
&&
i
+
1
<
argc
){
*
(
int
*
)
p
=
atoi
(
argv
[
i
+
1
]);
fprintf
(
stderr
,
" %s=%s
\n
"
,
name
,
argv
[
i
+
1
]);
strcpy
(
p
,
argv
[
i
+
1
]);
//
fprintf(stderr, " %s=%s\n", name, argv[i + 1]);
hit
=
true
;
}
}
...
...
@@ -52,7 +52,7 @@ void LoadParamInt(int argc, const char ** argv, const char * name, int * p, int
for
(
int
i
=
0
;
i
<
argc
;
i
++
){
if
(
!
strcmp
(
argv
[
i
],
vname
)
&&
i
+
1
<
argc
){
*
(
int
*
)
p
=
atoi
(
argv
[
i
+
1
]);
fprintf
(
stderr
,
" %s=%s
\n
"
,
name
,
argv
[
i
+
1
]);
//
fprintf(stderr, " %s=%s\n", name, argv[i + 1]);
hit
=
true
;
}
}
...
...
@@ -69,7 +69,8 @@ void LoadParamBool(int argc, const char ** argv, const char * name, bool * p, bo
for
(
int
i
=
0
;
i
<
argc
;
i
++
){
if
(
!
strcmp
(
argv
[
i
],
vname
)){
*
(
bool
*
)
p
=
true
;
fprintf
(
stderr
,
" %s=%s
\n
"
,
name
,
"true"
);
//fprintf(stderr, " %s=%s\n", name, "true");
hit
=
true
;
}
}
if
(
!
hit
)
...
...
@@ -84,12 +85,27 @@ void LoadParamFloat(int argc, const char ** argv, const char * name, float * p,
bool
hit
=
false
;
for
(
int
i
=
0
;
i
<
argc
;
i
++
){
if
(
!
strcmp
(
argv
[
i
],
vname
)
&&
i
+
1
<
argc
){
strcpy
((
char
*
)
p
,
argv
[
i
+
1
]);
fprintf
(
stderr
,
" %s=%s
\n
"
,
name
,
argv
[
i
+
1
]);
*
p
=
(
float
)
atof
(
argv
[
i
+
1
]);
//fprintf(stderr, " %s=%s\n", name, argv[i + 1]);
hit
=
true
;
}
}
if
(
!
hit
)
*
p
=
defaultP
;
}
void
ShowParams
(
int
argc
,
const
char
**
argv
)
{
fprintf
(
stderr
,
"args:
\n
"
);
for
(
int
i
=
0
;
i
<
argc
;
i
++
){
if
(
argv
[
i
][
0
]
==
'-'
){
if
(
i
+
1
<
argc
&&
argv
[
i
+
1
][
0
]
!=
'-'
)
fprintf
(
stderr
,
" %s=%s
\n
"
,
argv
[
i
],
argv
[
i
+
1
]);
else
fprintf
(
stderr
,
" %s=yes
\n
"
,
argv
[
i
]);
}
}
fprintf
(
stderr
,
"
\n
"
);
}
}
\ No newline at end of file
source/sample/transformer/T2TUtility.h
查看文件 @
f21e1b48
...
...
@@ -27,12 +27,15 @@
namespace
transformer
{
/* load
model parameter
s */
/* load
argument
s */
void
LoadParamString
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
char
*
p
,
char
*
defaultP
);
void
LoadParamInt
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
int
*
p
,
int
defaultP
);
void
LoadParamBool
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
bool
*
p
,
bool
defaultP
);
void
LoadParamFloat
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
float
*
p
,
float
defaultP
);
/* show arguments */
void
ShowParams
(
int
argc
,
const
char
**
argv
);
}
#endif
\ No newline at end of file
source/sample/transformer/Transformer.cpp
查看文件 @
f21e1b48
...
...
@@ -20,12 +20,36 @@
*/
#include "Transformer.h"
#include "T2TModel.h"
#include "T2TUtility.h"
#include "T2TTrainer.h"
namespace
transformer
{
int
TransformerMain
(
int
argc
,
const
char
**
argv
)
{
if
(
argc
==
0
)
return
1
;
ShowParams
(
argc
,
argv
);
char
*
trainFN
=
new
char
[
MAX_LINE_LENGTH
];
LoadParamString
(
argc
,
argv
,
"train"
,
trainFN
,
""
);
T2TModel
model
;
model
.
InitModel
(
argc
,
argv
);
if
(
strcmp
(
trainFN
,
""
)){
T2TTrainer
trainer
;
trainer
.
Init
(
argc
,
argv
);
trainer
.
Train
(
trainFN
,
&
model
);
}
delete
[]
trainFN
;
return
0
;
}
...
...
source/sample/transformer/Transformer.h
查看文件 @
f21e1b48
...
...
@@ -38,7 +38,7 @@ namespace transformer
{
/* entrance of the program */
int
TransformerM
M
ain
(
int
argc
,
const
char
**
argv
);
int
TransformerMain
(
int
argc
,
const
char
**
argv
);
}
...
...
source/tensor/XTensor.cpp
查看文件 @
f21e1b48
...
...
@@ -42,6 +42,8 @@
#include "core/movement/CopyValues.h"
#include "core/arithmetic/Sum.h"
#include "core/arithmetic/Multiply.h"
#include "core/arithmetic/Sub.h"
#include "core/arithmetic/Div.h"
#include "core/math/ScaleAndShift.h"
#ifdef USE_CUDA
...
...
@@ -354,6 +356,18 @@ XTensor XTensor::operator* (const XTensor& tensor)
return
Multiply
(
*
this
,
tensor
);
}
/* overloading of the minus-sign */
XTensor
XTensor
::
operator
-
(
const
XTensor
&
tensor
)
{
return
Sub
(
*
this
,
tensor
);
}
/* overloading of the division-sign */
XTensor
XTensor
::
operator
/
(
const
XTensor
&
tensor
)
{
return
Div
(
*
this
,
tensor
);
}
/*
linear transformation b = a * \scale + \shift
>> scale - the slope
...
...
@@ -610,8 +624,8 @@ double GaussRand()
double
pi
=
3.141592654
;
if
(
phase
==
0
){
u
=
rand
(
)
/
(
RAND_MAX
+
1.0
);
v
=
rand
(
)
/
(
RAND_MAX
+
1.0
);
u
=
(
rand
()
+
1
)
/
(
RAND_MAX
+
1.0
);
v
=
(
rand
()
+
1
)
/
(
RAND_MAX
+
1.0
);
z
=
sqrt
(
-
2.0
*
log
(
u
))
*
sin
(
2.0
*
pi
*
v
);
}
else
{
...
...
@@ -1008,8 +1022,8 @@ set the value of a cell in a 3d tensor in default type
bool
XTensor
::
Set3D
(
DTYPE
value
,
int
d0
,
int
d1
,
int
d2
)
{
CheckNTErrors
((
order
==
3
),
"Cannot get a 2d cell for a tensor whose order is not 2!"
);
CheckNTErrors
((
d0
>=
0
&&
d
1
<
dimSize
[
0
]),
"dimension 0 is out of range!"
);
CheckNTErrors
((
d2
>=
0
&&
d
2
<
dimSize
[
1
]),
"dimension 1 is out of range!"
);
CheckNTErrors
((
d0
>=
0
&&
d
0
<
dimSize
[
0
]),
"dimension 0 is out of range!"
);
CheckNTErrors
((
d2
>=
0
&&
d
1
<
dimSize
[
1
]),
"dimension 1 is out of range!"
);
CheckNTErrors
((
d2
>=
0
&&
d2
<
dimSize
[
2
]),
"dimension 1 is out of range!"
);
CheckNTErrors
((
dataType
==
DEFAULT_DTYPE
),
"The tensor is not in default type."
);
...
...
source/tensor/XTensor.h
查看文件 @
f21e1b48
...
...
@@ -203,6 +203,12 @@ public:
/* overloading of the multiply-sign */
XTensor
operator
*
(
const
XTensor
&
tensor
);
/* overloading of the minus-sign */
XTensor
operator
-
(
const
XTensor
&
tensor
);
/* overloading of the division-sign */
XTensor
operator
/
(
const
XTensor
&
tensor
);
/* linear transformation */
XTensor
Lin
(
DTYPE
scale
,
DTYPE
shift
=
0
);
...
...
source/tensor/core/arithmetic/MatrixMul.cpp
查看文件 @
f21e1b48
...
...
@@ -251,9 +251,7 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
/*
matrix multiplication with no transposition c = a * b * alpha
>> a - tensor a
>> transposedA - indicates whether the matrices in a are transposed
>> b - tensor b
>> transposedB - indicates whether teh matrices in b are transposed
>> alpha - a coefficient
>> parallelRunner - parallel processing module
<< return - the result of matrix multiplication
...
...
source/tensor/core/arithmetic/MatrixMulBatched.cpp
查看文件 @
f21e1b48
...
...
@@ -326,4 +326,60 @@ XTensor MatrixMulBatched(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const
return
c
;
}
/*
matrix multiplication of the two tensors (do it on site)
c = a * b * alpha
make a new tensor to keep the result and return it
for each 2-dimensional data array in a (denoted as ai) and
each 2-dimensional data array in b (denoted as bi), we have
ci = ai * bi * alpha + cm * beta
>> a - tensor a
>> b - tensor b
>> alpha - a coefficient
>> parallelRunner - parallel processing module
<< return - the result of matrix multiplication of the two tensors
*/
XTensor
MatrixMulBatched
(
const
XTensor
&
a
,
const
XTensor
&
b
,
DTYPE
alpha
,
XPRunner
*
parallelRunner
)
{
CheckNTErrors
(
a
.
dataType
==
b
.
dataType
,
"Input tensors should have the same data type!"
);
CheckNTErrors
(
a
.
order
>=
2
&&
b
.
order
>=
2
,
"Input tensors must have a order >= 2!"
);
CheckNTErrors
(
a
.
order
==
b
.
order
,
"Input tensor and output tensor must have same order!"
);
int
an
=
a
.
dimSizeRDI
[
1
];
int
am
=
a
.
dimSizeRDI
[
0
];
int
bn
=
b
.
dimSizeRDI
[
1
];
int
bm
=
b
.
dimSizeRDI
[
0
];
CheckNTErrors
(
am
==
bn
,
"Unmatched tensors in multiplication!"
);
int
order
=
a
.
order
;
int
sub
=
0
;
int
*
dimSize
=
new
int
[
order
];
for
(
int
i
=
0
;
i
<
a
.
order
-
2
;
i
++
)
dimSize
[
sub
++
]
=
a
.
dimSize
[
i
];
dimSize
[
sub
++
]
=
an
;
dimSize
[
sub
++
]
=
bm
;
float
dr
=
(
!
a
.
isSparse
||
!
b
.
isSparse
)
?
1.0
F
:
MAX
(
a
.
denseRatio
,
b
.
denseRatio
);
XTensor
c
(
order
,
dimSize
,
a
.
dataType
,
dr
,
a
.
devID
,
a
.
mem
);
c
.
SetTMP
();
/*call _MatrixMulBatched function */
_MatrixMulBatched
(
&
a
,
X_NOTRANS
,
&
b
,
X_NOTRANS
,
&
c
,
alpha
,
0
,
parallelRunner
);
/* tensor connections */
XLink
::
MakeLink
(
&
a
,
&
b
,
&
c
,
MATH_MATRIXMULBATCHED
);
XLink
::
AddParamToHeadTrans
(
&
c
,
X_NOTRANS
);
XLink
::
AddParamToHeadTrans
(
&
c
,
X_NOTRANS
);
XLink
::
AddParamToHead
(
&
c
,
alpha
);
/* destroy variables */
delete
[]
dimSize
;
return
c
;
}
}
// namespace nts(NiuTrans.Tensor)
source/tensor/core/arithmetic/MatrixMulBatched.h
查看文件 @
f21e1b48
...
...
@@ -73,6 +73,17 @@ where trans() returns the transposed matrix if the flag is fired
XTensor
MatrixMulBatched
(
const
XTensor
&
a
,
MATRIX_TRANS_TYPE
transposedA
,
const
XTensor
&
b
,
MATRIX_TRANS_TYPE
transposedB
,
DTYPE
alpha
=
(
DTYPE
)
1
.
0
,
XPRunner
*
parallelRunner
=
NULL
);
/*
matrix multiplication of the two tensors (return a XTensor structure) c = a * b * alpha
make a new tensor to keep the result and return it
for each 2-dimensional data array in a (denoted as ai) and
each 2-dimensional data array in b (denoted as bi), we have
ci = ai * bi * alpha + cm * beta
*/
XTensor
MatrixMulBatched
(
const
XTensor
&
a
,
const
XTensor
&
b
,
DTYPE
alpha
=
(
DTYPE
)
1
.
0
,
XPRunner
*
parallelRunner
=
NULL
);
}
// namespace nts(NiuTrans.Tensor)
#endif // __MATRIXMULBATCHED_H__
\ No newline at end of file
source/tensor/core/movement/CopyValues.cpp
查看文件 @
f21e1b48
...
...
@@ -36,7 +36,7 @@ copy s to t
void
_CopyValues
(
const
XTensor
*
s
,
XTensor
*
t
,
XStream
*
stream
)
{
CheckNTErrors
((
s
!=
NULL
&&
t
!=
NULL
),
"The input tensor and output tensor must be nonempty!"
);
CheckNTErrors
((
s
->
data
!=
NULL
),
"Cannot copy
from
an empty data array!"
);
CheckNTErrors
((
s
->
data
!=
NULL
),
"Cannot copy an empty data array!"
);
CheckNTErrors
((
t
->
data
!=
NULL
),
"Cannot copy to an empty data array!"
);
CheckNTErrors
((
s
->
unitNum
==
t
->
unitNum
),
"Unmatched data item number!"
);
...
...
@@ -82,7 +82,7 @@ copy s to t
void
_CopyValues
(
const
XTensor
*
s
,
const
int
sBeg
,
const
int
sLen
,
XTensor
*
t
,
const
int
tBeg
,
XStream
*
stream
)
{
CheckNTErrors
(
s
!=
NULL
&&
t
!=
NULL
,
"The input tensor and output tensor must be nonempty!"
);
CheckNTErrors
(
s
->
data
!=
NULL
&&
t
->
data
!=
NULL
,
"Cannot copy
from
an empty data array!"
);
CheckNTErrors
(
s
->
data
!=
NULL
&&
t
->
data
!=
NULL
,
"Cannot copy an empty data array!"
);
CheckNTErrors
(
s
->
unitSize
==
t
->
unitSize
,
"The input tensors must be of the same unit size!"
);
CheckNTErrors
(
s
->
order
>
sBeg
&&
sBeg
>=
0
&&
sLen
<=
s
->
unitNum
,
"Wrong segment on the source side"
);
CheckNTErrors
(
t
->
order
>
tBeg
&&
tBeg
>=
0
,
"Wrong segment on the target side"
);
...
...
source/tensor/core/shape/Split.cpp
查看文件 @
f21e1b48
...
...
@@ -168,6 +168,8 @@ make a new tensor to keep the result and return it
XTensor
Split
(
const
XTensor
&
s
,
int
whereToSplit
,
int
splitNum
)
{
CheckNTErrors
(
&
s
,
"Invalid tensors!"
);
CheckNTErrors
(
s
.
dimSize
[
whereToSplit
]
%
splitNum
==
0
,
"The dimension cannot be splitted due to the inproper split number"
);
int
order
=
s
.
order
+
1
;
int
*
dimSize
=
new
int
[
order
];
...
...
source/tensor/function/LogSoftmax.cpp
查看文件 @
f21e1b48
...
...
@@ -282,6 +282,9 @@ void _LogSoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
CheckNTErrors
((
!
dedx
->
isSparse
),
"The gradient matrix must be dense!"
);
CheckNTErrors
((
gold
!=
NULL
),
"The gold standard cannot be empty!"
);
if
(
leadDim
<
0
)
leadDim
=
y
->
order
-
1
;
int
leadDimRDI
=
y
->
order
-
leadDim
-
1
;
#ifdef USE_CUDA
if
(
gold
->
devID
>=
0
)
{
...
...
source/tensor/function/Softmax.cpp
查看文件 @
f21e1b48
...
...
@@ -188,7 +188,11 @@ void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
CheckNTErrors
((
dedx
->
isSparse
==
false
),
"The gradient tensor must be dense!"
);
CheckNTErrors
((
gold
!=
NULL
),
"Incorrect x gold standard tensor!"
);
if
(
leadDim
<
0
)
leadDim
=
y
->
order
-
1
;
int
leadDimRDI
=
y
->
order
-
leadDim
-
1
;
#ifdef USE_CUDA
if
(
y
->
devID
>=
0
){
_CudaSoftmaxBackward
(
gold
,
y
,
x
,
dedy
,
dedx
,
leadDim
,
lossName
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论