Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
W
WMT19-1.0.14
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
Emmay
WMT19-1.0.14
Commits
ad6cc8e3
Commit
ad6cc8e3
authored
Mar 19, 2019
by
libei
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
support dot product relative fast decode
parent
cc78cf5b
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
26 行增加
和
15 行删除
+26
-15
tensor2tensor/models/common_attention.py
+26
-15
没有找到文件。
tensor2tensor/models/common_attention.py
查看文件 @
ad6cc8e3
...
...
@@ -470,13 +470,18 @@ def multihead_attention(query_antecedent,
x
=
common_layers
.
conv1d
(
x
,
output_depth
,
1
,
name
=
"output_transform"
)
return
x
def
_generate_relative_positions_matrix
(
length
,
max_relative_position
):
def
_generate_relative_positions_matrix
(
length
,
max_relative_position
,
cache
=
False
):
"""Generates matrix of relative positions between inputs."""
range_vec
=
tf
.
range
(
length
)
range_mat
=
tf
.
reshape
(
tf
.
tile
(
range_vec
,
[
length
]),
[
length
,
length
])
#range_mat = tf.Print(range_mat, [range_mat], message="range_mat:", summarize=100)
distance_mat
=
range_mat
-
tf
.
transpose
(
range_mat
)
#distance_mat = tf.Print(distance_mat, [distance_mat], message="distance_mat:", summarize=100)
if
not
cache
:
#training process
range_vec
=
tf
.
range
(
length
)
range_mat
=
tf
.
reshape
(
tf
.
tile
(
range_vec
,
[
length
]),
[
length
,
length
])
# range_mat = tf.Print(range_mat, [range_mat], message="range_mat:", summarize=100)
distance_mat
=
range_mat
-
tf
.
transpose
(
range_mat
)
# distance_mat = tf.Print(distance_mat, [distance_mat], message="distance_mat:", summarize=100)
else
:
distance_mat
=
tf
.
expand_dims
(
tf
.
range
(
-
length
+
1
,
1
,
1
),
0
)
distance_mat_clipped
=
tf
.
clip_by_value
(
distance_mat
,
-
max_relative_position
,
max_relative_position
)
...
...
@@ -490,12 +495,14 @@ def _generate_relative_positions_matrix(length, max_relative_position):
return
final_mat
def
_generate_relative_positions_embeddings
(
length
,
depth
,
max_relative_position
,
name
,
debug_flag
=
None
):
"""Generates tensor of size [length, length, depth]."""
max_relative_position
,
name
,
debug_flag
=
None
,
cache
=
False
):
"""Generates tensor of size [1 if cache else length, length, depth]."""
with
tf
.
variable_scope
(
name
):
#
wq
: relative_positions_matrix shape is (L, L), value range is 0 ~ 2K (total 2K+1)
#
libei
: relative_positions_matrix shape is (L, L), value range is 0 ~ 2K (total 2K+1)
relative_positions_matrix
=
_generate_relative_positions_matrix
(
length
,
max_relative_position
)
length
,
max_relative_position
,
cache
=
cache
)
vocab_size
=
max_relative_position
*
2
+
1
# Generates embedding for each relative position of dimension depth.
embeddings_table
=
tf
.
get_variable
(
"embeddings"
,
[
vocab_size
,
depth
])
...
...
@@ -562,7 +569,8 @@ def dot_product_attention_relative(q,
name
=
None
,
make_image_summary
=
False
,
dropout_broadcast_dims
=
None
,
debug_flag
=
None
):
debug_flag
=
None
,
cache
=
False
):
"""Calculate relative position-aware dot-product self-attention.
The attention calculation is augmented with learned representations for the
...
...
@@ -595,8 +603,9 @@ def dot_product_attention_relative(q,
# This calculation only works for self attention.
# q, k and v must therefore have the same shape.
# wq: compatible means same shape
q
.
get_shape
()
.
assert_is_compatible_with
(
k
.
get_shape
())
q
.
get_shape
()
.
assert_is_compatible_with
(
v
.
get_shape
())
if
not
cache
:
q
.
get_shape
()
.
assert_is_compatible_with
(
k
.
get_shape
())
q
.
get_shape
()
.
assert_is_compatible_with
(
v
.
get_shape
())
# Use separate embeddings suitable for keys and values.
depth
=
q
.
get_shape
()
.
as_list
()[
3
]
...
...
@@ -604,10 +613,12 @@ def dot_product_attention_relative(q,
# wq: relations_keys: (L, L, H), where H is hidden size of head
relations_keys
=
_generate_relative_positions_embeddings
(
length
,
depth
,
max_relative_position
,
"relative_positions_keys"
,
debug_flag
=
debug_flag
+
"+rp-key"
if
debug_flag
is
not
None
else
None
)
debug_flag
=
debug_flag
+
"+rp-key"
if
debug_flag
is
not
None
else
None
,
cache
=
cache
)
relations_values
=
_generate_relative_positions_embeddings
(
length
,
depth
,
max_relative_position
,
"relative_positions_values"
,
debug_flag
=
debug_flag
+
"+rp-value"
if
debug_flag
is
not
None
else
None
)
debug_flag
=
debug_flag
+
"+rp-value"
if
debug_flag
is
not
None
else
None
,
cache
=
cache
)
if
debug_flag
is
not
None
:
q
=
tf
.
Print
(
q
,
[
q
],
summarize
=
100
,
message
=
"
%
s+q"
%
debug_flag
)
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论