TNormalize.cpp 6.05 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-06-20
*/

#include "TNormalize.h"

namespace nts { // namespace nts(NiuTrans.Tensor)

/*
case 1: normalized the data with normal distribution 
For an input x, y = a * (x-mean)/sqrt(variance+\epsilon) + b.
where a and b are the scalar and bias respectively, 
and \epsilon is the adjustment parameter.
*/
bool TestNormalize1()
{
	/* a source tensor of size (2, 3) */
	int sOrder = 2;
	int * sDimSize = new int[sOrder];
	sDimSize[0] = 2;
	sDimSize[1] = 3;

	int sUnitNum = 1;
	for (int i = 0; i < sOrder; i++)
		sUnitNum *= sDimSize[i];

	/* a target tensor of size (2, 3) */
	int tOrder = 2;
	int * tDimSize = new int[tOrder];
	tDimSize[0] = 2;
	tDimSize[1] = 3;

	int tUnitNum = 1;
	for (int i = 0; i < tOrder; i++)
		tUnitNum *= tDimSize[i];

	/* a mean tensor of size (3) */
	int meanOrder = 1;
	int * meanDimSize = new int[meanOrder];
	meanDimSize[0] = 3;

	int meanUnitNum = 1;
	for (int i = 0; i < meanOrder; i++)
		meanUnitNum *= meanDimSize[i];

	/* a variance tensor of size (3) */
	int varOrder = 1;
	int * varDimSize = new int[varOrder];
	varDimSize[0] = 3;

	int varUnitNum = 1;
	for (int i = 0; i < varOrder; i++)
		varUnitNum *= varDimSize[i];

	/* a scalar tensor of size (2, 3) */
	int aOrder = 2;
	int * aDimSize = new int[aOrder];
	aDimSize[0] = 2;
	aDimSize[1] = 3;

	int aUnitNum = 1;
	for (int i = 0; i < aOrder; i++)
		aUnitNum *= aDimSize[i];

	/* a bias tensor of size (2, 3) */
	int bOrder = 2;
	int * bDimSize = new int[bOrder];
	bDimSize[0] = 2;
	bDimSize[1] = 3;

	int bUnitNum = 1;
	for (int i = 0; i < bOrder; i++)
		bUnitNum *= bDimSize[i];

	DTYPE sData[2][3] = { {1.0F, 2.0F, 3.0F},
	                      {1.5F, 2.5F, 3.5F} };
	DTYPE meanData[3] = {1.0F, 1.5F, 2.0F};
	DTYPE varData[3] = {1.0F, 1.0F, 4.0F};
    DTYPE aData[2][3] = { {1.0F, 1.0F, 1.0F},
	                      {1.0F, 1.0F, 1.0F} };
	DTYPE answer[2][3] = { {0.0F, 0.5F, 0.5F},
	                       {0.5F, 1.0F, 0.75F} };

	/* CPU test */
	bool cpuTest = true;

	/* create tensors */
	XTensor * s = NewTensor(sOrder, sDimSize);
	XTensor * t = NewTensor(tOrder, tDimSize);
	XTensor * mean = NewTensor(meanOrder, meanDimSize);
	XTensor * var = NewTensor(varOrder, varDimSize);
	XTensor * a = NewTensor(aOrder, aDimSize);
	XTensor * b = NewTensor(bOrder, bDimSize);
	XTensor * tMe = NewTensor(sOrder, sDimSize);
    XTensor tUser;

	/* initialize variables */
	s->SetData(sData, sUnitNum);
	tMe->SetData(sData, sUnitNum);
	mean->SetData(meanData, meanUnitNum);
	var->SetData(varData, varUnitNum);
	a->SetData(aData, aUnitNum);
	b->SetZeroAll();
	t->SetZeroAll();

	/* call normalize function */
	_Normalize(s, t, 0, mean, var, a, b, 0.0F);
	_NormalizeMe(tMe, 0, mean, var, a, b, 0.0F);
    tUser = Normalize(*s, 0, *mean, *var, *a, *b, 0.0F);
    
	/* check results */
	cpuTest = t->CheckData(answer, tUnitNum, 1e-4F) 
        && tMe->CheckData(answer, tUnitNum, 1e-4F) && tUser.CheckData(answer, tUnitNum, 1e-4F);

#ifdef USE_CUDA
	/* GPU test */
	bool gpuTest = true;

	/* create tensors */
	XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
	XTensor * meanGPU = NewTensor(meanOrder, meanDimSize, X_FLOAT, 1.0F, 0);
	XTensor * varGPU = NewTensor(varOrder, varDimSize, X_FLOAT, 1.0F, 0);
	XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0);
	XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0);
	XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
	XTensor * tMeGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

	/* initialize variables */
	sGPU->SetData(sData, sUnitNum);
	tMeGPU->SetData(sData, sUnitNum);
	meanGPU->SetData(meanData, meanUnitNum);
	varGPU->SetData(varData, varUnitNum);
	aGPU->SetData(aData, aUnitNum);
	bGPU->SetZeroAll();
	tGPU->SetZeroAll();

	/* call Normalize function */
	_Normalize(sGPU, tGPU, 0, meanGPU, varGPU, aGPU, bGPU, 0.0F);
	_NormalizeMe(tMeGPU, 0, meanGPU, varGPU, aGPU, bGPU, 0.0F);
    tUserGPU = Normalize(*sGPU, 0, *meanGPU, *varGPU, *aGPU, *bGPU, 0.0F);

	/* check results */
	gpuTest = tGPU->CheckData(answer, tUnitNum, 1e-4F) 
        && tMeGPU->CheckData(answer, tUnitNum, 1e-4F) && tUserGPU.CheckData(answer, tUnitNum, 1e-4F);

	/* destroy variables */
	delete s;
	delete tMe;
	delete t;
	delete mean;
	delete var;
	delete a;
	delete b;
	delete sGPU;
	delete tMeGPU;
	delete tGPU;
	delete meanGPU;
	delete varGPU;
	delete aGPU;
	delete bGPU;
	delete[] sDimSize;
	delete[] tDimSize;
	delete[] meanDimSize;
	delete[] varDimSize;
	delete[] aDimSize;
	delete[] bDimSize;

	return cpuTest && gpuTest;
#else
	/* destroy variables */
	delete s;
	delete tMe;
	delete t;
	delete mean;
	delete var;
	delete a;
	delete b;
	delete[] sDimSize;
	delete[] tDimSize;
	delete[] meanDimSize;
	delete[] varDimSize;
	delete[] aDimSize;
	delete[] bDimSize;

	return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for Normalize Function */
bool TestNormalize()
{
	XPRINT(0, stdout, "[TEST NORMALIZE] normalized the data with normal distribution \n");
	bool returnFlag = true, caseFlag = true;

	/* case 1 test */
	caseFlag = TestNormalize1();

	if (!caseFlag) {
		returnFlag = false;
		XPRINT(0, stdout, ">> case 1 failed!\n");
	}
	else
		XPRINT(0, stdout, ">> case 1 passed!\n");

	/* other cases test */
	/*
	TODO!!
	*/

	if (returnFlag) {
		XPRINT(0, stdout, ">> All Passed!\n");
	}
	else
		XPRINT(0, stdout, ">> Failed!\n");

	XPRINT(0, stdout, "\n");

	return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)