TReduceMax.cpp 7.68 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-30
20
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-06 float16 added
linye committed
21 22 23
*/

#include "TReduceMax.h"
24
#include "../core/getandset/ConvertDataType.h"
linye committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

namespace nts { // namespace nts(NiuTrans.Tensor)

/* 
case 1: get the max value of the items along a dimension of the tensor. 
In this case,
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
bool TestReduceMax1()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a output tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

    DTYPE sData[2][4] = { {0.0F, 5.0F, 2.0F, 3.0F},
                          {4.0F, 1.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 5.0F, 6.0F, 7.0F};
    DTYPE answer2[2] = {5.0F, 7.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t1 = NewTensor(tOrder1, tDimSize1);
    XTensor * t2 = NewTensor(tOrder2, tDimSize2);
    XTensor tUser1;
    XTensor tUser2;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(s, t1, 0);
    _ReduceMax(s, t2, 1);
    tUser1 = ReduceMax(*s, 0);
    tUser2 = ReduceMax(*s, 1);

    /* check results */
91 92
    cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1) && 
              t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2);
linye committed
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU1;
    XTensor tUserGPU2;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMax function */
    _ReduceMax(sGPU, tGPU1, 0);
    _ReduceMax(sGPU, tGPU2, 1);
    tUserGPU1 = ReduceMax(*sGPU, 0);
    tUserGPU2 = ReduceMax(*sGPU, 1);

    /* check results */
117 118
    gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1) && 
              tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2);
linye committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
#endif // USE_CUDA
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
case 2: float16 get the max value of the items along a dimension of the tensor.
In this case,
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
bool TestReduceMax2()
{
    /* a input tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a output tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

    DTYPE sData[2][4] = { {0.0F, 5.0F, 2.0F, 3.0F},
                          {4.0F, 1.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 5.0F, 6.0F, 7.0F};
    DTYPE answer2[2] = {5.0F, 7.0F};

    /* CPU test */
    bool cpuTest = true;

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU1;
    XTensor tUserGPU2;

    /* create float16 tensors */
    XTensor sHalfGPU;
    XTensor tHalfGPU1;
    XTensor tHalfGPU2;
    XTensor tUserHalfGPU1;
    XTensor tUserHalfGPU2;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* convert data type form float to float16 */
    sHalfGPU = ConvertDataType(*sGPU, X_FLOAT16);
    tHalfGPU1 = ConvertDataType(*tGPU1, X_FLOAT16);
    tHalfGPU2 = ConvertDataType(*tGPU2, X_FLOAT16);

    /* call reducemax function */
    _ReduceMax(&sHalfGPU, &tHalfGPU1, 0);
    _ReduceMax(&sHalfGPU, &tHalfGPU2, 1);
    tUserHalfGPU1 = ReduceMax(sHalfGPU, 0);
    tUserHalfGPU2 = ReduceMax(sHalfGPU, 1);

    /* convert data type from float16 to float */
    _ConvertDataType(&tHalfGPU1, tGPU1);
    _ConvertDataType(&tHalfGPU2, tGPU2);
    tUserGPU1 = ConvertDataType(tUserHalfGPU1, X_FLOAT);
    tUserGPU2 = ConvertDataType(tUserHalfGPU2, X_FLOAT);

    /* check results */
    gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1) &&
              tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2);

    /* destroy variables */
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
#endif // USE_CUDA
}

linye committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/* other cases */
/*
TODO!!
*/

/* test for ReduceMax Function */
bool TestReduceMax()
{
    XPRINT(0, stdout, "[TEST ReduceMax] get the max value of the items along a dimension of the tensor\n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMax1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

272 273 274 275 276 277 278 279 280
    /* case 2 test */
    caseFlag = TestReduceMax2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

linye committed
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)