TReduceMean.cpp 4.42 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: LI Yinqiao (email: li.yin.qiao.2012@hotmail.com) 2018-04-30
*/

#include "TReduceMean.h"

namespace nts { // namespace nt(NiuTrans.Tensor)

/* case 1: get the mean value along a dimension of the tensor */
bool TestReduceMean1()
{
    /* a tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

    DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                          {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {2.0F, 3.0F, 4.0F, 5.0F};
    DTYPE answer2[2] = {1.5F, 5.5F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * t1 = NewTensor(tOrder1, tDimSize1);
    XTensor * t2 = NewTensor(tOrder2, tDimSize2);
    XTensor tUser1;
    XTensor tUser2;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t1->SetZeroAll();
    t2->SetZeroAll();

    /* call ReduceMean function */
    _ReduceMean(s, t1, 0);
    _ReduceMean(s, t2, 1);
    tUser1 = ReduceMean(*s, 0);
    tUser2 = ReduceMean(*s, 1);

    /* check results */
    cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1)
        && t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensor */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU1;
    XTensor tUserGPU2;

    /* Initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();

    /* call ReduceMean function */
    _ReduceMean(sGPU, tGPU1, 0);
    _ReduceMean(sGPU, tGPU2, 1);
    tUserGPU1 = ReduceMean(*sGPU, 0);
    tUserGPU2 = ReduceMean(*sGPU, 1);

    /* check results */
    gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1)
        && tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2);

    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete sGPU;
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
TODO!!
*/

/* test for ReduceMean Function */
bool TestReduceMean()
{
    XPRINT(0, stdout, "[TEST ReduceMean] get the mean value along a dimension of the tensor \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceMean1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    ///* other cases test */
    ///*
    //TODO!!
    //*/

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)