Binary.cu 7.49 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: JIANG Yufan (email: jiangyufan2018@outlook.com) 2019-04-05
*/

#include <math.h>
#include "../../XDevice.h"
#include "../../XName.h"
#include "Binary.h"
#include "Binary.cuh"

namespace nts { // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA

__device__
int cudascale(int x, int scale)
{
    return x * scale;
}

__device__
float cudascale(float x, float scale)
{
    return x * scale;
}

__device__
int cudadescale(int x, int descale)
{
    return x / descale;
}

__device__
float cudadescale(float x, float descale)
{
    return x / descale;
}

__device__
int cudashift(int x, int shift)
{
    return x + shift;
}

__device__
float cudashift(float x, float descale)
{
    return x + descale;
}

__device__
int cudamod(int x, int mod)
{
    return x % mod;
}


#define SIMPLE_BINARY_FUNCTION_GPU(funcName, origFunc)                      \
__global__                                                                  \
void Kernel##funcName(int * a, int * b, int size, int num)                  \
{                                                                           \
    int i = blockDim.x * blockIdx.x + threadIdx.x;                          \
                                                                            \
    if (i < size)                                                           \
        b[i] = (int)origFunc(a[i], num);                                    \
}                                                                           \
                                                                            \
void _Cuda##funcName(const XTensor * a, XTensor * b, int num)               \
{                                                                           \
    CheckNTErrors((XTensor::IsSameShaped(a, b)),                            \
                  "Input tensors should have the same type!");              \
    CheckNTErrors((a->isSparse == false), "TODO!");                         \
                                                                            \
    int gridSize[3];                                                        \
    int blockSize[3];                                                       \
                                                                            \
    GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);         \
                                                                            \
    dim3 blocks(gridSize[0]);                                               \
    dim3 threads(blockSize[0]);                                             \
                                                                            \
    int devIDBackup;                                                        \
    ProtectCudaDev(a->devID, devIDBackup);                                  \
                                                                            \
    if (a->dataType == X_INT) {                                             \
        Kernel##funcName<<<blocks, threads>>>                               \
                         ((int*)a->data, (int*)b->data, a->unitNum, num);   \
    }                                                                       \
    else {                                                                  \
        ShowNTErrors("TODOhaha!");                                          \
    }                                                                       \
                                                                            \
    BacktoCudaDev(a->devID, devIDBackup);                                   \
}                                                                           \

#define SIMPLE_BINARY_FUNCTION_FLOAT_GPU(funcName, origFunc)                \
__global__                                                                  \
void Kernel##funcName(float * a, float * b, int size, float num)            \
{                                                                           \
    int i = blockDim.x * blockIdx.x + threadIdx.x;                          \
                                                                            \
    if (i < size)                                                           \
        b[i] = (float)origFunc(a[i], num);                                  \
}                                                                           \
                                                                            \
                                                                            \
void _Cuda##funcName(const XTensor * a, XTensor * b, float num)             \
{                                                                           \
    CheckNTErrors((XTensor::IsSameShaped(a, b)),                            \
                  "Input tensors should have the same type!");              \
    CheckNTErrors((a->isSparse == false), "TODO!");                         \
                                                                            \
    int gridSize[3];                                                        \
    int blockSize[3];                                                       \
                                                                            \
    GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);         \
                                                                            \
    dim3 blocks(gridSize[0]);                                               \
    dim3 threads(blockSize[0]);                                             \
                                                                            \
    int devIDBackup;                                                        \
    ProtectCudaDev(a->devID, devIDBackup);                                  \
                                                                            \
    if (a->dataType == X_FLOAT) {                                           \
        Kernel##funcName<<<blocks, threads>>>                               \
                        ((float*)a->data, (float*)b->data, a->unitNum, num);\
    }                                                                       \
    else {                                                                  \
        ShowNTErrors("TODO!");                                              \
    }                                                                       \
                                                                            \
    BacktoCudaDev(a->devID, devIDBackup);                                   \
}

SIMPLE_BINARY_FUNCTION_GPU(Scale, cudascale)
SIMPLE_BINARY_FUNCTION_FLOAT_GPU(ScaleFloat, cudascale)
SIMPLE_BINARY_FUNCTION_GPU(Descale, cudadescale)
SIMPLE_BINARY_FUNCTION_FLOAT_GPU(DescaleFloat, cudadescale)
SIMPLE_BINARY_FUNCTION_GPU(Shift, cudashift)
SIMPLE_BINARY_FUNCTION_FLOAT_GPU(ShiftFloat, cudashift)
SIMPLE_BINARY_FUNCTION_GPU(Mod, cudamod)

#endif // USE_CUDA

} // namespace nts(NiuTrans.Tensor)