Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Tensor.LowPrecision
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
linye
Tensor.LowPrecision
Commits
3187918c
Commit
3187918c
authored
Jul 24, 2019
by
linye
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update float16 datatype of Sign, Sub, SubDim, SumDim
parent
d10087d8
全部展开
隐藏空白字符变更
内嵌
并排
正在显示
17 个修改的文件
包含
951 行增加
和
128 行删除
+951
-128
doc/manual.md
+2
-93
source/network/Main.cpp
+17
-0
source/network/XNet.cpp
+0
-3
source/sample/fnnlm/FNNLM.cpp
+1
-1
source/tensor/core/arithmetic/Sign.cu
+8
-19
source/tensor/core/arithmetic/Sign.cuh
+2
-5
source/tensor/core/arithmetic/Sub.cu
+17
-2
source/tensor/core/arithmetic/Sub.cuh
+2
-1
source/tensor/core/arithmetic/SubDim.cu
+29
-0
source/tensor/core/arithmetic/SumDim.cu
+29
-0
source/tensor/core/math/ScaleAndShift.cu
+2
-2
source/tensor/test/TSign.cpp
+94
-0
source/tensor/test/TSub.cpp
+191
-0
source/tensor/test/TSubDim.cpp
+220
-0
source/tensor/test/TSumDim.cpp
+333
-0
source/tensor/test/Test.cpp
+3
-2
source/tensor/test/Test.h
+1
-0
没有找到文件。
doc/manual.md
查看文件 @
3187918c
差异被折叠。
点击展开。
source/network/Main.cpp
查看文件 @
3187918c
...
@@ -48,6 +48,7 @@ void ReduceSumFP16Test();
...
@@ -48,6 +48,7 @@ void ReduceSumFP16Test();
void
LogSoftmaxFP16Test
();
void
LogSoftmaxFP16Test
();
void
ClipFP16Test
();
void
ClipFP16Test
();
void
ScaleAndShiftFP16Test
();
void
ScaleAndShiftFP16Test
();
void
InitTensorFP16Test
();
using
namespace
nts
;
using
namespace
nts
;
using
namespace
fnnlm
;
using
namespace
fnnlm
;
...
@@ -87,6 +88,8 @@ int main(int argc, const char ** argv )
...
@@ -87,6 +88,8 @@ int main(int argc, const char ** argv )
//return 0;
//return 0;
//ScaleAndShiftFP16Test();
//ScaleAndShiftFP16Test();
//return 0;
//return 0;
//InitTensorFP16Test();
//return 0;
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-test"
))
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-test"
))
Test
();
Test
();
...
@@ -106,6 +109,20 @@ int main(int argc, const char ** argv )
...
@@ -106,6 +109,20 @@ int main(int argc, const char ** argv )
return
0
;
return
0
;
}
}
void
InitTensorFP16Test
()
{
XTensor
a
;
InitTensor2D
(
&
a
,
1
,
10
,
X_FLOAT
,
0
);
a
.
SetDataRand
(
-
10.0
F
,
10.0
F
);
XTensor
halfA
;
halfA
=
ConvertDataType
(
a
,
X_FLOAT16
);
halfA
.
Dump
(
&
halfA
,
stderr
,
"halfA:"
);
XTensor
b
;
InitTensor2D
(
&
b
,
1
,
10
,
X_FLOAT16
,
0
);
_SetDataRand
(
&
b
,
-
10.0
F
,
10.0
F
);
b
.
Dump
(
&
b
,
stderr
,
"b:"
);
}
void
ScaleAndShiftFP16Test
()
{
void
ScaleAndShiftFP16Test
()
{
XTensor
a
;
XTensor
a
;
XTensor
intA
;
XTensor
intA
;
...
...
source/network/XNet.cpp
查看文件 @
3187918c
...
@@ -189,7 +189,6 @@ void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_N
...
@@ -189,7 +189,6 @@ void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_N
}
}
//XLossGrad lossGrad;
//XLossGrad lossGrad;
///* we start with the gradient with respect to the loss for output layers */
///* we start with the gradient with respect to the loss for output layers */
//for (int i = 0; i < roots.count; i++) {
//for (int i = 0; i < roots.count; i++) {
// XTensor * root = (XTensor*)roots.Get(i);
// XTensor * root = (XTensor*)roots.Get(i);
...
@@ -198,11 +197,9 @@ void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_N
...
@@ -198,11 +197,9 @@ void XNet::Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_N
// XLink &income = root->income;
// XLink &income = root->income;
// int funcID = income.typeID;
// int funcID = income.typeID;
// void * params = income.params;
// void * params = income.params;
// /* we compute dE/dx if the output is generated by an activation function y = f(x).
// /* we compute dE/dx if the output is generated by an activation function y = f(x).
// Note that we do not need to obtain dE/dy here because it is no use in the
// Note that we do not need to obtain dE/dy here because it is no use in the
// folloing process of back-propagation */
// folloing process of back-propagation */
// if (gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)) {
// if (gold != NULL && income.tailNum == 1 && (funcID & FUNCTION_BASE)) {
// if (funcID == FUNC_LOGSOFTMAX || funcID == FUNC_SOFTMAX) {
// if (funcID == FUNC_LOGSOFTMAX || funcID == FUNC_SOFTMAX) {
// XTensor * x = income.tails[0];
// XTensor * x = income.tails[0];
...
...
source/sample/fnnlm/FNNLM.cpp
查看文件 @
3187918c
...
@@ -481,7 +481,7 @@ void Train(const char * train, bool isShuffled, FNNModel &model)
...
@@ -481,7 +481,7 @@ void Train(const char * train, bool isShuffled, FNNModel &model)
/* this is implemented by gather function */
/* this is implemented by gather function */
ForwardAutoDiff
(
ngrams
,
ngramNum
,
output
,
model
);
ForwardAutoDiff
(
ngrams
,
ngramNum
,
output
,
model
);
/* this is implemented by multiply function */
/
//
* this is implemented by multiply function */
//ForwardAutoDiff(inputs, output, model);
//ForwardAutoDiff(inputs, output, model);
/* automatic differentiation */
/* automatic differentiation */
...
...
source/tensor/core/arithmetic/Sign.cu
查看文件 @
3187918c
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
/*
/*
* $Created by: LI Yinqiao (li.yin.qiao.2012@hotmail.com) 2018-7-11
* $Created by: LI Yinqiao (li.yin.qiao.2012@hotmail.com) 2018-7-11
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "../../XDevice.h"
#include "../../XDevice.h"
...
@@ -33,15 +34,16 @@ set each entry to its sign value (CUDA Kernel)
...
@@ -33,15 +34,16 @@ set each entry to its sign value (CUDA Kernel)
>> b - pointer to output data array
>> b - pointer to output data array
>> size - size of the data array
>> size - size of the data array
*/
*/
template<class T>
__global__
__global__
void KernelSign(
DTYPE * a, DTYPE
* b, int size)
void KernelSign(
T * a, T
* b, int size)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < size)
{
if (i < size){
if (a[i] > 0)
if (a[i] >
(T)
0)
b[i] = 1.0F;
b[i] = 1.0F;
else if (a[i] == 0)
else if (a[i] ==
(T)
0)
b[i] = 0.0F;
b[i] = 0.0F;
else
else
b[i] = -1.0F;
b[i] = -1.0F;
...
@@ -49,19 +51,6 @@ void KernelSign(DTYPE * a, DTYPE * b, int size)
...
@@ -49,19 +51,6 @@ void KernelSign(DTYPE * a, DTYPE * b, int size)
}
}
/*
/*
set each entry to its sign value with float16 data type value (CUDA Kernel)
This is for float16 computation
>> a - pointer to input data array
>> b - pointer to output data array
>> size - size of the data array
*/
__global__
void KernelSign(__half * a, __half * b, int size)
{
return;
}
/*
set each entry to its sign value
set each entry to its sign value
>> a - input tensor we are processing
>> a - input tensor we are processing
>> b - output tensor we are processing
>> b - output tensor we are processing
...
@@ -83,10 +72,10 @@ void _CudaSign(const XTensor * a, XTensor * b)
...
@@ -83,10 +72,10 @@ void _CudaSign(const XTensor * a, XTensor * b)
ProtectCudaDev(a->devID, devIDBackup);
ProtectCudaDev(a->devID, devIDBackup);
if (a->dataType == DEFAULT_DTYPE) {
if (a->dataType == DEFAULT_DTYPE) {
KernelSign
<< <blocks, threads >>
>((DTYPE*)a->data, (DTYPE*)b->data, a->unitNum);
KernelSign
<<<blocks, threads>>
>((DTYPE*)a->data, (DTYPE*)b->data, a->unitNum);
}
}
else if (a->dataType == X_FLOAT16) {
else if (a->dataType == X_FLOAT16) {
KernelSign
<< <blocks, threads >>
>((__half*)a->data, (__half*)b->data, a->unitNum);
KernelSign
<<<blocks, threads>>
>((__half*)a->data, (__half*)b->data, a->unitNum);
}
}
else {
else {
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
...
...
source/tensor/core/arithmetic/Sign.cuh
查看文件 @
3187918c
...
@@ -29,12 +29,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
...
@@ -29,12 +29,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
#ifdef USE_CUDA
/* set each entry to its sign value (CUDA Kernel) */
/* set each entry to its sign value (CUDA Kernel) */
template<class T>
__global__
__global__
void KernelSign(DTYPE * a, DTYPE * b, int size);
void KernelSign(T * a, T * b, int size);
/* set each entry to its sign value (CUDA Kernel) with float16 data type*/
__global__
void KernelSign(__half * a, __half * b, int size);
/* set each entry to its sign value */
/* set each entry to its sign value */
void _CudaSign(const XTensor * a, XTensor * b);
void _CudaSign(const XTensor * a, XTensor * b);
...
...
source/tensor/core/arithmetic/Sub.cu
查看文件 @
3187918c
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-01
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-01
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "../../XDevice.h"
#include "../../XDevice.h"
...
@@ -36,8 +37,9 @@ c = a - b * \beta
...
@@ -36,8 +37,9 @@ c = a - b * \beta
>> size - the size of a/b/c
>> size - the size of a/b/c
>> beta - the coefficient
>> beta - the coefficient
*/
*/
template<class T>
__global__
__global__
void KernelSUB(
DTYPE * a, DTYPE * b, DTYPE * c, int size, DTYPE
beta)
void KernelSUB(
T * a, T * b, T * c, int size, T
beta)
{
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.x * blockIdx.x + threadIdx.x;
...
@@ -77,7 +79,20 @@ void _CudaSub(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta)
...
@@ -77,7 +79,20 @@ void _CudaSub(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta)
GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
dim3 blocks(gridSize[0]);
dim3 blocks(gridSize[0]);
dim3 threads(blockSize[0]);
dim3 threads(blockSize[0]);
KernelSUB << <blocks, threads >> >((DTYPE*)a->data, (DTYPE*)b->data, (DTYPE*)c->data, a->unitNum, beta);
KernelSUB<<<blocks, threads>>>((DTYPE*)a->data, (DTYPE*)b->data, (DTYPE*)c->data, a->unitNum, beta);
}
else if (a->dataType == X_FLOAT16 &&
b->dataType == X_FLOAT16 &&
c->dataType == X_FLOAT16)
{
int gridSize[3], blockSize[3];
GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
dim3 blocks(gridSize[0]);
dim3 threads(blockSize[0]);
half beta1 = __float2half(beta);
KernelSUB<<<blocks, threads>>>((__half*)a->data, (__half*)b->data, (__half*)c->data, a->unitNum, (__half)beta1);
}
}
else {
else {
// TODO!!
// TODO!!
...
...
source/tensor/core/arithmetic/Sub.cuh
查看文件 @
3187918c
...
@@ -29,8 +29,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
...
@@ -29,8 +29,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
#ifdef USE_CUDA
/* subtraction of data arrays (CUDA Kernel) */
/* subtraction of data arrays (CUDA Kernel) */
template<class T>
__global__
__global__
void KernelSUB(
DTYPE * a, DTYPE * b, DTYPE * c, int size, DTYPE beta = (DTYPE
)1.0);
void KernelSUB(
T * a, T * b, T * c, int size, T beta = (T
)1.0);
/* tensor subtraction c = a - b * \beta (cuda version) */
/* tensor subtraction c = a - b * \beta (cuda version) */
void _CudaSub(const XTensor * a, const XTensor * b, XTensor * c = NULL, DTYPE beta = (DTYPE)1.0);
void _CudaSub(const XTensor * a, const XTensor * b, XTensor * c = NULL, DTYPE beta = (DTYPE)1.0);
...
...
source/tensor/core/arithmetic/SubDim.cu
查看文件 @
3187918c
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
/*
/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-13
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-13
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "SubDim.cuh"
#include "SubDim.cuh"
...
@@ -168,6 +169,34 @@ void _CudaSubDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
...
@@ -168,6 +169,34 @@ void _CudaSubDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
ShowNTErrors("Something is wrong!");
ShowNTErrors("Something is wrong!");
}
}
}
}
else if (a->dataType == X_FLOAT16) {
half beta1 = __float2half(beta);
if (stride > 1) {
GDevs.GetCudaThread2D(a->devID, stride * blockNum, blockSize, MAX_INT, cudaGrids, cudaBlocks);
if (beta == (DTYPE)1.0F)
KernelSubWithCol<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, beta1);
else
KernelSubWithCol<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, beta1);
}
else if (stride == 1) {
GDevs.GetCudaThread2D(a->devID, blockSize, blockNum, MAX_INT, cudaGrids, cudaBlocks);
if (beta == (DTYPE)1.0F)
KernelSubWithRow<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, beta1);
else
KernelSubWithRow<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, beta1);
}
else {
ShowNTErrors("Something is wrong!");
}
}
else {
else {
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
}
}
...
...
source/tensor/core/arithmetic/SumDim.cu
查看文件 @
3187918c
...
@@ -19,6 +19,7 @@
...
@@ -19,6 +19,7 @@
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-07-29
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-07-29
* &Updated by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-12-26
* &Updated by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-12-26
* Add summation by broadcasting.
* Add summation by broadcasting.
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "SumDim.cuh"
#include "SumDim.cuh"
...
@@ -170,6 +171,34 @@ void _CudaSumDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
...
@@ -170,6 +171,34 @@ void _CudaSumDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
ShowNTErrors("Something is wrong!");
ShowNTErrors("Something is wrong!");
}
}
}
}
else if (a->dataType == X_FLOAT16) {
half beta1 = __float2half(beta);
if (stride > 1) {
GDevs.GetCudaThread2D(a->devID, stride * blockNum, blockSize, MAX_INT, cudaGrids, cudaBlocks);
if (beta == (DTYPE)1.0F)
KernelAddWithCol<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, beta1);
else
KernelAddWithCol<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, beta1);
}
else if (stride == 1) {
GDevs.GetCudaThread2D(a->devID, blockSize, blockNum, MAX_INT, cudaGrids, cudaBlocks);
if (beta == (DTYPE)1.0F)
KernelAddWithRow<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, beta1);
else
KernelAddWithRow<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, beta1);
}
else {
ShowNTErrors("Something is wrong!");
}
}
else {
else {
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
}
}
...
...
source/tensor/core/math/ScaleAndShift.cu
查看文件 @
3187918c
...
@@ -108,7 +108,7 @@ void _CudaScaleAndShift(const XTensor * a, XTensor * b, DTYPE scale, DTYPE shift
...
@@ -108,7 +108,7 @@ void _CudaScaleAndShift(const XTensor * a, XTensor * b, DTYPE scale, DTYPE shift
else
else
KernelScaleAndShift<__half, false, false> << <blocks, threads >> >((__half*)a->data, (__half*)b->data, a->unitNum, scale1, shift1);
KernelScaleAndShift<__half, false, false> << <blocks, threads >> >((__half*)a->data, (__half*)b->data, a->unitNum, scale1, shift1);
}
}
else if (a->dataType == X_INT)
{
else if (a->dataType == X_INT){
int scale2 = int(scale);
int scale2 = int(scale);
int shift2 = int(shift);
int shift2 = int(shift);
...
@@ -121,7 +121,7 @@ void _CudaScaleAndShift(const XTensor * a, XTensor * b, DTYPE scale, DTYPE shift
...
@@ -121,7 +121,7 @@ void _CudaScaleAndShift(const XTensor * a, XTensor * b, DTYPE scale, DTYPE shift
else
else
KernelScaleAndShift<int, false, false><<<blocks, threads>>>((int *)a->data, (int *)b->data, a->unitNum, scale2, shift2);
KernelScaleAndShift<int, false, false><<<blocks, threads>>>((int *)a->data, (int *)b->data, a->unitNum, scale2, shift2);
}
}
else if (a->dataType == X_INT8)
{
else if (a->dataType == X_INT8){
__int8 scale2 = __int8(scale);
__int8 scale2 = __int8(scale);
__int8 shift2 = __int8(shift);
__int8 shift2 = __int8(shift);
...
...
source/tensor/test/TSign.cpp
查看文件 @
3187918c
...
@@ -17,9 +17,11 @@
...
@@ -17,9 +17,11 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-12
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-12
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "TSign.h"
#include "TSign.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
@@ -110,6 +112,88 @@ bool TestSign1()
...
@@ -110,6 +112,88 @@ bool TestSign1()
#endif // USE_CUDA
#endif // USE_CUDA
}
}
/*
case 2: float16 test Sign function.
Set every entry to its sign value.
*/
bool
TestSign2
()
{
/* a tensor of size (3, 2) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
3
;
aDimSize
[
1
]
=
2
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
DTYPE
aData
[
3
][
2
]
=
{
{
1.0
F
,
-
2.0
F
},
{
0.0
F
,
4.0
F
},
{
5.0
F
,
-
6.0
F
}
};
DTYPE
answer
[
3
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
0.0
F
,
1.0
F
},
{
1.0
F
,
-
1.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
aMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
bUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
aMeHalfGPU
;
XTensor
bUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
aMeGPU
->
SetData
(
aData
,
aUnitNum
);
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
aMeHalfGPU
=
ConvertDataType
(
*
aMeGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
/* call Sign function */
_Sign
(
&
aHalfGPU
,
&
bHalfGPU
);
_SignMe
(
&
aMeHalfGPU
);
bUserHalfGPU
=
Sign
(
aHalfGPU
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
bHalfGPU
,
bGPU
);
_ConvertDataType
(
&
aMeHalfGPU
,
aMeGPU
);
bUserGPU
=
ConvertDataType
(
bUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
bGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
aMeGPU
->
CheckData
(
answer
,
aUnitNum
,
1e-4
F
)
&&
bUserGPU
.
CheckData
(
answer
,
aUnitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
aMeGPU
;
delete
[]
aDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/* other cases */
/*
/*
TODO!!
TODO!!
...
@@ -131,6 +215,16 @@ bool TestSign()
...
@@ -131,6 +215,16 @@ bool TestSign()
else
else
XPRINT
(
0
,
stdout
,
">> case 1 passed!
\n
"
);
XPRINT
(
0
,
stdout
,
">> case 1 passed!
\n
"
);
/* case 2 test */
caseFlag
=
TestSign2
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 2 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* other cases test */
/* other cases test */
/*
/*
TODO!!
TODO!!
...
...
source/tensor/test/TSub.cpp
查看文件 @
3187918c
...
@@ -17,9 +17,11 @@
...
@@ -17,9 +17,11 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-01
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-01
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "TSub.h"
#include "TSub.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
@@ -214,6 +216,177 @@ bool TestSub2()
...
@@ -214,6 +216,177 @@ bool TestSub2()
#endif // USE_CUDA
#endif // USE_CUDA
}
}
/* case 3: float16 tensor subtraction c = a - b * \beta */
bool
TestSub3
()
{
/* a tensor of size (2, 4) */
int
order
=
2
;
int
*
dimSize
=
new
int
[
order
];
dimSize
[
0
]
=
2
;
dimSize
[
1
]
=
4
;
int
unitNum
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
unitNum
*=
dimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
][
4
]
=
{
{
1.0
F
,
-
1.0
F
,
-
3.0
F
,
-
5.0
F
},
{
-
7.0
F
,
-
9.0
F
,
-
11.0
F
,
-
13.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
-
1.0
F
,
2.0
F
,
5.0
F
,
8.0
F
},
{
11.0
F
,
14.0
F
,
17.0
F
,
20.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
unitNum
);
cMeGPU
->
SetData
(
aData
,
unitNum
);
bGPU
->
SetData
(
bData
,
unitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call Sub function */
_Sub
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
);
_SubMe
(
&
cMeHalfGPU
,
&
bHalfGPU
);
cUserHalfGPU
=
Sub
(
aHalfGPU
,
bHalfGPU
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
cMeGPU
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
cUserGPU
.
CheckData
(
answer
,
unitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
dimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
dimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* case 4: float16 tensor subtraction c = a - b * \beta */
bool
TestSub4
()
{
/* a tensor of size (2, 4) */
int
order
=
2
;
int
*
dimSize
=
new
int
[
order
];
dimSize
[
0
]
=
2
;
dimSize
[
1
]
=
4
;
int
unitNum
=
1
;
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
unitNum
*=
dimSize
[
i
];
}
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
][
4
]
=
{
{
1.0
F
,
-
1.0
F
,
-
3.0
F
,
-
5.0
F
},
{
-
7.0
F
,
-
9.0
F
,
-
11.0
F
,
-
13.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
-
0.5
F
,
1.5
F
,
3.5
F
,
5.5
F
},
{
7.5
F
,
9.5
F
,
11.5
F
,
13.5
F
}
};
float
beta
=
0.5
F
;
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
order
,
dimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
unitNum
);
cMeGPU
->
SetData
(
aData
,
unitNum
);
bGPU
->
SetData
(
bData
,
unitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call Sub function */
_Sub
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
beta
);
_SubMe
(
&
cMeHalfGPU
,
&
bHalfGPU
,
beta
);
cUserHalfGPU
=
Sub
(
aHalfGPU
,
bHalfGPU
,
beta
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
cMeGPU
->
CheckData
(
answer
,
unitNum
,
1e-4
F
)
&&
cUserGPU
.
CheckData
(
answer
,
unitNum
,
1e-4
F
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
dimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
dimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/* other cases */
/*
/*
TODO!!
TODO!!
...
@@ -243,6 +416,24 @@ bool TestSub()
...
@@ -243,6 +416,24 @@ bool TestSub()
else
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestSub3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestSub4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/* other cases test */
/*
/*
TODO!!
TODO!!
...
...
source/tensor/test/TSubDim.cpp
查看文件 @
3187918c
...
@@ -17,11 +17,13 @@
...
@@ -17,11 +17,13 @@
/*
/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-13
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-13
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "TSubDim.h"
#include "TSubDim.h"
#include "../core/arithmetic/SubDim.h"
#include "../core/arithmetic/SubDim.h"
#include "../XTensor.h"
#include "../XTensor.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
@@ -249,6 +251,206 @@ bool TestSubDim2()
...
@@ -249,6 +251,206 @@ bool TestSubDim2()
#endif // USE_CUDA
#endif // USE_CUDA
}
}
/*
case 3: float16 tensor subtraction c = a - b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is subtracted with b by broadcasting
*/
bool
TestSubDim3
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
]
=
{
1.0
F
,
-
1.0
F
};
DTYPE
answer
[
2
][
4
]
=
{
{
-
1.0
F
,
0.0
F
,
1.0
F
,
2.0
F
},
{
5.0
F
,
6.0
F
,
7.0
F
,
8.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sub function */
_SubDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
0
);
_SubDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
0
);
cUserHalfGPU
=
SubDim
(
aHalfGPU
,
bHalfGPU
,
0
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 4: float16 tensor subtraction c = a - b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is subtracted with b by broadcasting
*/
bool
TestSubDim4
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2, 2) */
int
bOrder
=
2
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
bDimSize
[
1
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
-
1.0
F
,
1.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
-
1.0
F
,
2.0
F
,
3.0
F
,
2.0
F
},
{
3.0
F
,
6.0
F
,
7.0
F
,
6.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sub function */
_SubDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
1
);
_SubDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
1
);
cUserHalfGPU
=
SubDim
(
aHalfGPU
,
bHalfGPU
,
1
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/* other cases */
/*
/*
TODO!!
TODO!!
...
@@ -278,6 +480,24 @@ bool TestSubDim()
...
@@ -278,6 +480,24 @@ bool TestSubDim()
else
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestSubDim3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestSubDim4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/* other cases test */
/*
/*
TODO!!
TODO!!
...
...
source/tensor/test/TSumDim.cpp
查看文件 @
3187918c
...
@@ -17,12 +17,14 @@
...
@@ -17,12 +17,14 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-30
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-30
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-24 float16 added
*/
*/
#include "TSumDim.h"
#include "TSumDim.h"
#include "../XTensor.h"
#include "../XTensor.h"
#include "../core/arithmetic/SumDim.h"
#include "../core/arithmetic/SumDim.h"
#include "../core/getandset/SetData.h"
#include "../core/getandset/SetData.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
@@ -471,6 +473,310 @@ bool TestSumDim4()
...
@@ -471,6 +473,310 @@ bool TestSumDim4()
#endif // USE_CUDA
#endif // USE_CUDA
}
}
/*
case 5: float16 tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case, (2, 4) + (2) = (2, 4), n = 0.
*/
bool
TestSumDim5
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
]
=
{
1.0
F
,
-
1.0
F
};
DTYPE
answer
[
2
][
4
]
=
{
{
1.0
F
,
2.0
F
,
3.0
F
,
4.0
F
},
{
3.0
F
,
4.0
F
,
5.0
F
,
6.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sum function */
_SumDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
0
);
_SumDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
0
);
cUserHalfGPU
=
SumDim
(
aHalfGPU
,
bHalfGPU
,
0
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 6: float16 tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case, (2, 4) + (2, 2) = (2, 4), n = 1.
*/
bool
TestSumDim6
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2, 2) */
int
bOrder
=
2
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
bDimSize
[
1
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
-
1.0
F
,
1.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
1.0
F
,
0.0
F
,
1.0
F
,
4.0
F
},
{
5.0
F
,
4.0
F
,
5.0
F
,
8.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sum function */
_SumDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
1
);
_SumDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
1
);
cUserHalfGPU
=
SumDim
(
aHalfGPU
,
bHalfGPU
,
1
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 7: float16 tensor summation c = a + b * \beta
where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting.
In this case,
(20, 40, 4000) + (40) = (20, 40, 4000), dim = 1.
*/
bool
TestSumDim7
()
{
/* a tensor of size (20, 40, 4000) */
int
aOrder
=
3
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
20
;
aDimSize
[
1
]
=
40
;
aDimSize
[
2
]
=
4000
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (40) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
40
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
/* CPU test */
bool
cpuTest
=
true
;
/* create tensors */
XTensor
*
answer
=
NewTensor
(
aOrder
,
aDimSize
);
/* initialize variables */
_SetDataFixed
(
answer
,
1.0
F
);
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetZeroAll
();
cMeGPU
->
SetZeroAll
();
_SetDataFixed
(
bGPU
,
1.0
F
);
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sum function */
_SumDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
1
);
_SumDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
1
);
cUserHalfGPU
=
SumDim
(
aHalfGPU
,
bHalfGPU
,
1
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
->
data
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
->
data
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
->
data
,
aUnitNum
);
/* destroy variables */
delete
answer
;
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
answer
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/* other cases */
/*
/*
TODO!!
TODO!!
...
@@ -518,6 +824,33 @@ bool TestSumDim()
...
@@ -518,6 +824,33 @@ bool TestSumDim()
//else
//else
// XPRINT(0, stdout, ">> case 4 passed!\n");
// XPRINT(0, stdout, ">> case 4 passed!\n");
/* case 5 test */
caseFlag
=
TestSumDim5
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 5 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 5 passed!
\n
"
);
/* case 6 test */
caseFlag
=
TestSumDim6
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 6 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 6 passed!
\n
"
);
/* case 7 test */
caseFlag
=
TestSumDim7
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 7 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 7 passed!
\n
"
);
/* other cases test */
/* other cases test */
/*
/*
TODO!!
TODO!!
...
...
source/tensor/test/Test.cpp
查看文件 @
3187918c
...
@@ -63,17 +63,18 @@ bool Test()
...
@@ -63,17 +63,18 @@ bool Test()
//wrong = !TestScaleAndShift() || wrong;
//wrong = !TestScaleAndShift() || wrong;
//wrong = !TestSelect() || wrong;
//wrong = !TestSelect() || wrong;
//wrong = !TestSetAscendingOrder() || wrong;
//wrong = !TestSetAscendingOrder() || wrong;
wrong
=
!
TestSetData
()
||
wrong
;
//
wrong = !TestSetData() || wrong;
//wrong = !TestSign() || wrong;
//wrong = !TestSign() || wrong;
//wrong = !TestSin() || wrong;
//wrong = !TestSin() || wrong;
//wrong = !TestSort() || wrong;
//wrong = !TestSort() || wrong;
//wrong = !TestSplit() || wrong;
//wrong = !TestSplit() || wrong;
//wrong = !TestSpread() || wrong;
//wrong = !TestSpread() || wrong;
//wrong = !TestSub() || wrong;
//wrong = !TestSub() || wrong;
//wrong = !TestSubDim() || wrong;
//wrong = !TestSum() || wrong;
//wrong = !TestSum() || wrong;
//wrong = !TestSumByColumnTV() || wrong;
//wrong = !TestSumByColumnTV() || wrong;
//wrong = !TestSumByColumnVT() || wrong;
//wrong = !TestSumByColumnVT() || wrong;
//
wrong = !TestSumDim() || wrong;
wrong
=
!
TestSumDim
()
||
wrong
;
//wrong = !TestTan() || wrong;
//wrong = !TestTan() || wrong;
//wrong = !TestTranspose() || wrong;
//wrong = !TestTranspose() || wrong;
//wrong = !TestTopK() || wrong;
//wrong = !TestTopK() || wrong;
...
...
source/tensor/test/Test.h
查看文件 @
3187918c
...
@@ -63,6 +63,7 @@
...
@@ -63,6 +63,7 @@
#include "TSplit.h"
#include "TSplit.h"
#include "TSpread.h"
#include "TSpread.h"
#include "TSub.h"
#include "TSub.h"
#include "TSubDim.h"
#include "TSum.h"
#include "TSum.h"
#include "TSumByColumnTV.h"
#include "TSumByColumnTV.h"
#include "TSumByColumnVT.h"
#include "TSumByColumnVT.h"
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论