Commit c5fc6c59 by linye

1. merge with liyinqiao branch 2. support read with float16 datatype

parent 3187918c
......@@ -43,18 +43,18 @@ void XFuncGrad::MakeGrad(XTensor * node, bool isEfficient)
XNoder::MakeGrad(input);
if(operID == FUNC_HARDTANH)
_HardTanHBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
_HardTanHBackward(output, input, output->grad, input->grad);
else if(operID == FUNC_IDENTITY)
_IdentityBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
_IdentityBackward(output, input, output->grad, input->grad);
else if(operID == FUNC_LOGSOFTMAX){
int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in logsoftmax!");
_LogSoftmaxBackward(NULL, output, input, output->grad, input->grad, NULL, leadDim, NOLOSS);
}
else if(operID == FUNC_RECTIFY)
_RectifyBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
_RectifyBackward(output, input, output->grad, input->grad);
else if(operID == FUNC_SIGMOID)
_SigmoidBackward(NULL, output, input, output->grad, input->grad, NOLOSS);
_SigmoidBackward(output, input, output->grad, input->grad);
else if(operID == FUNC_SOFTMAX){
int leadDim = income.GetParamInt(0);
CheckNTErrors(leadDim >= 0 && leadDim < input->order, "wrong leading dimension in softmax!");
......
......@@ -61,7 +61,7 @@ void XLossGrad::MakeGrad(XTensor * node, bool isEfficient)
if(operID == LOSS_CROSSENTROPY) {
if (income.tailNum == 3)
padding = income.tails[2];
leadingDim = income.GetParamInt(0);
leadingDim = income.GetParamInt(0);
CheckNTErrors(leadingDim >= 0 && leadingDim < output->order, "wrong leading dimension in logsoftmax!");
_CrossEntropyBackward(dedy, output, gold, weight, padding, leadingDim);
}
......@@ -90,39 +90,39 @@ compute dE/dx for a given function y = f(x)
>> params - parameters of the function
>> lossName - name of the loss, e.g., cross entropy
*/
void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params,
LOSS_FUNCTION_NAME lossName)
{
CheckNTErrors(gold && y && x, "Empty input tensors!");
CheckNTErrors(dedx, "Empty gradient tensors!");
CheckNTErrors((funcID & FUNCTION_BASE) != 0, "Illegal function id");
if(funcID == FUNC_HARDTANH){
_HardTanHBackward(gold, y, x, dedy, dedx, lossName);
}
else if(funcID == FUNC_IDENTITY){
_IdentityBackward(gold, y, x, dedy, dedx, lossName);
}
else if(funcID == FUNC_LOGSOFTMAX){
int leadDim = *(int*)params;
_LogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
}
else if(funcID == FUNC_RECTIFY){
_RectifyBackward(gold, y, x, dedy, dedx, lossName);
}
else if(funcID == FUNC_SIGMOID){
_SigmoidBackward(gold, y, x, dedy, dedx, lossName);
}else if(funcID == FUNC_SOFTMAX){
int leadDim = *(int*)params;
_SoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
}
else{
ShowNTErrors("wrong function found when call the backward process!");
}
}
//void XLossGrad::Compute(XTensor * gold, XTensor * y, XTensor * x,
// XTensor * dedy, XTensor * dedx, XTensor * padding,
// int funcID, void * params,
// LOSS_FUNCTION_NAME lossName)
//{
// CheckNTErrors(gold && y && x, "Empty input tensors!");
// CheckNTErrors(dedx, "Empty gradient tensors!");
// CheckNTErrors((funcID & FUNCTION_BASE) != 0, "Illegal function id");
//
// if(funcID == FUNC_HARDTANH){
// _HardTanHBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_IDENTITY){
// _IdentityBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_LOGSOFTMAX){
// int leadDim = *(int*)params;
// _LogSoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
// }
// else if(funcID == FUNC_RECTIFY){
// _RectifyBackward(gold, y, x, dedy, dedx, lossName);
// }
// else if(funcID == FUNC_SIGMOID){
// _SigmoidBackward(gold, y, x, dedy, dedx, lossName);
// }else if(funcID == FUNC_SOFTMAX){
// int leadDim = *(int*)params;
// _SoftmaxBackward(gold, y, x, dedy, dedx, padding, leadDim, lossName);
// }
// else{
// ShowNTErrors("wrong function found when call the backward process!");
// }
//
//}
/*
compute dE/dy for variable y and error(loss) function E
......@@ -131,19 +131,27 @@ compute dE/dy for variable y and error(loss) function E
>> dedy - dE/dy
>> lossName - name of the loss, e.g., cross entropy
*/
void XLossGrad::Compute(XTensor * gold, XTensor * y,
XTensor * dedy, XTensor * padding,
LOSS_FUNCTION_NAME lossName)
{
if(gold == NULL){
_SetDataFixed(dedy, 1.0F);
return;
}
//_LossBackward(dedy, gold, y, lossName);
if(lossName == CROSSENTROPY)
_CrossEntropyBackward(dedy, y, gold, NULL, padding);
}
//void XLossGrad::Compute(XTensor * gold, XTensor * y,
// XTensor * dedy, XTensor * padding,
// LOSS_FUNCTION_NAME lossName)
//{
// if(gold == NULL){
// if(dedy->dataType == X_FLOAT)
// _SetDataFixedFloat(dedy, 1.0F);
// else if(dedy->dataType == X_DOUBLE)
// _SetDataFixedDouble(dedy, 1.0);
// else if(dedy->dataType == X_INT)
// _SetDataFixedInt(dedy, 1);
// else{
// ShowNTErrors("TODO");
// }
// return;
// }
//
// //_LossBackward(dedy, gold, y, lossName);
// if(lossName == CROSSENTROPY)
// _CrossEntropyBackward(dedy, y, gold, NULL, padding);
//
//}
}
\ No newline at end of file
......@@ -43,11 +43,11 @@ public:
static
bool IsLossOP(XTensor * node);
/* compute dE/dx for a given function y = f(x) */
void Compute(XTensor * gold, XTensor * y, XTensor * x,
XTensor * dedy, XTensor * dedx, XTensor * padding,
int funcID, void * params,
LOSS_FUNCTION_NAME lossName);
///* compute dE/dx for a given function y = f(x) */
//void Compute(XTensor * gold, XTensor * y, XTensor * x,
// XTensor * dedy, XTensor * dedx, XTensor * padding,
// int funcID, void * params,
// LOSS_FUNCTION_NAME lossName);
/* compute dE/dy for variable y and error(loss) function E */
void Compute(XTensor * gold, XTensor * y,
......
......@@ -530,7 +530,7 @@ void XMathGrad::GradMatrixMul(XTensor * node, bool isEfficient)
XTensor * dedc = node->grad;
XTensor * deda = a->grad;
XTensor * dedb = b->grad;
if(a->order == 2 && b->order == 2)
GradMatrixMul(a, deda, transA, b, dedb, transB, dedc, alpha, isEfficient);
else if(transA == X_NOTRANS && a->order > 2 && b->order == 2){
......@@ -735,7 +735,7 @@ void XMathGrad::GradMultiply(XTensor * node, bool isEfficient)
if (!isEfficient || b->isGrad) {
XNoder::MakeGrad(b);
_Multiply(node->grad, a, b->grad, 1.0F);;
_Multiply(node->grad, a, b->grad, 1.0F);
}
node->visitMark = NODE_FINISHED;
......@@ -765,15 +765,15 @@ void XMathGrad::GradMultiplyDim(XTensor * node, bool isEfficient)
/* dE/da */
_MultiplyDim(node->grad, b, a->grad, n, 1.0F);
/* dE/db */
/* dE/db */
int order = a->order;
int dimSize[MAX_TENSOR_DIM_NUM];
memcpy(dimSize, a->dimSize, sizeof(int) * a->order);
XTensor * bGradTMP = NewTensorBuf(node->grad, node->devID, node->mem);
_Multiply(node->grad, a, bGradTMP);
if(n == order - 1){
int reshapedSize[MAX_TENSOR_DIM_NUM];
reshapedSize[0] = a->unitNum/dimSize[order - 1];
......@@ -855,7 +855,6 @@ void XMathGrad::GradMultiplyBroadcast(XTensor * node, bool isEfficient)
XTensor * a = income.tails[0];
XTensor * b = income.tails[1];
DTYPE beta = income.GetParam(0);
XNoder::MakeGrad(a);
_MultiplyBroadcast(node->grad, b, a->grad, 1.0F);
......@@ -1079,91 +1078,91 @@ dE/db = - dE/dc * b.reduce(0,...,n-1,n+1,...) * \beta
*/
void XMathGrad::GradSubDim(XTensor * node, bool isEfficient)
{
XLink &income = node->income;
CheckNTErrors(income.tailNum == 2, "Wrong input tensor number for SUBDIM!");
XTensor * a = income.tails[0];
XTensor * b = income.tails[1];
int n = income.GetParamInt(0);
DTYPE beta = income.GetParam(1);
XNoder::MakeGrad(a);
XNoder::MakeGrad(b);
_Sum(a->grad, node->grad, a->grad);
int order = a->order;
int dimSize[MAX_TENSOR_DIM_NUM];
memcpy(dimSize, a->dimSize, sizeof(int) * a->order);
if(n == order - 1){
int reshapedSize[MAX_TENSOR_DIM_NUM];
reshapedSize[0] = a->unitNum / dimSize[order - 1];
reshapedSize[1] = dimSize[order - 1];
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node->grad->Reshape(2, reshapedSize);
//if(b->outgo.tailNum > 1){
XTensor * bGradTMP = NewTensorBuf(b->grad, b->devID, b->mem);
_ReduceSum(node->grad, bGradTMP, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(bGradTMP, beta);
_Sub(b->grad, bGradTMP, b->grad);
DelTensorBuf(bGradTMP);
/*}
else{
_ReduceSum(node->grad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node->grad->Reshape(order, dimSize);
}
else{
int reshapedSize[MAX_TENSOR_DIM_NUM];
reshapedSize[0] = 1;
reshapedSize[1] = dimSize[n];
reshapedSize[2] = 1;
for(int i = 0; i < order; i++){
if(i < n)
reshapedSize[0] *= dimSize[i];
}
reshapedSize[2] = a->unitNum / (reshapedSize[0] * reshapedSize[1]);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node->grad->Reshape(3, reshapedSize);
XTensor * interGrad = NewTensorBuf(2, reshapedSize, b->dataType, b->denseRatio, b->devID, b->mem);
_ReduceSum(node->grad, interGrad, 2);
//if(b->outgo.tailNum > 1){
XTensor * bGradTMP = NewTensorBuf(b->grad, b->devID, b->mem);
_ReduceSum(interGrad, bGradTMP, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(bGradTMP, beta);
_Sub(b->grad, bGradTMP, b->grad);
DelTensorBuf(bGradTMP);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node->grad->Reshape(order, dimSize);
DelTensorBuf(interGrad);
}
node->visitMark = NODE_FINISHED;
XLink &income = node->income;
CheckNTErrors(income.tailNum == 2, "Wrong input tensor number for SUBDIM!");
XTensor * a = income.tails[0];
XTensor * b = income.tails[1];
int n = income.GetParamInt(0);
DTYPE beta = income.GetParam(1);
XNoder::MakeGrad(a);
XNoder::MakeGrad(b);
_Sum(a->grad, node->grad, a->grad);
int order = a->order;
int dimSize[MAX_TENSOR_DIM_NUM];
memcpy(dimSize, a->dimSize, sizeof(int) * a->order);
if(n == order - 1){
int reshapedSize[MAX_TENSOR_DIM_NUM];
reshapedSize[0] = a->unitNum / dimSize[order - 1];
reshapedSize[1] = dimSize[order - 1];
/* we reshape dE/dc to a matrix whose column number is equal to the
size of b. Then we can reduce the matrix into a row vector. */
node->grad->Reshape(2, reshapedSize);
//if(b->outgo.tailNum > 1){
XTensor * bGradTMP = NewTensorBuf(b->grad, b->devID, b->mem);
_ReduceSum(node->grad, bGradTMP, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(bGradTMP, beta);
_Sub(b->grad, bGradTMP, b->grad);
DelTensorBuf(bGradTMP);
/*}
else{
_ReduceSum(node->grad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node->grad->Reshape(order, dimSize);
}
else{
int reshapedSize[MAX_TENSOR_DIM_NUM];
reshapedSize[0] = 1;
reshapedSize[1] = dimSize[n];
reshapedSize[2] = 1;
for(int i = 0; i < order; i++){
if(i < n)
reshapedSize[0] *= dimSize[i];
}
reshapedSize[2] = a->unitNum / (reshapedSize[0] * reshapedSize[1]);
/* we reshape dE/dc to a 3D tensor of size (x, y, z) where y = |b|.
Then reduce along with z and x to obtain dE/db. */
node->grad->Reshape(3, reshapedSize);
XTensor * interGrad = NewTensorBuf(2, reshapedSize, b->dataType, b->denseRatio, b->devID, b->mem);
_ReduceSum(node->grad, interGrad, 2);
//if(b->outgo.tailNum > 1){
XTensor * bGradTMP = NewTensorBuf(b->grad, b->devID, b->mem);
_ReduceSum(interGrad, bGradTMP, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(bGradTMP, beta);
_Sub(b->grad, bGradTMP, b->grad);
DelTensorBuf(bGradTMP);
/*}
else{
_ReduceSum(interGrad, b->grad, 0);
if(beta != 1.0F)
_ScaleAndShiftMe(b->grad, beta);
_ScaleAndShiftMe(b->grad, -1.0F);
}*/
node->grad->Reshape(order, dimSize);
DelTensorBuf(interGrad);
}
node->visitMark = NODE_FINISHED;
}
/*
......@@ -1319,7 +1318,7 @@ void XMathGrad::GradSumBroadcast(XTensor * node, bool isEfficient)
XTensor * a = income.tails[0];
XTensor * b = income.tails[1];
DTYPE beta = income.GetParam(0);
//DTYPE beta = income.GetParam(0);
XNoder::MakeGrad(a);
_Sum(a->grad, node->grad, a->grad);
......
......@@ -146,10 +146,10 @@ private:
static
void GradSub(XTensor * node, bool isEfficient);
/* gradient for sub with one dimension: c = a - b * \beta
where the size of b is equal to that of one dimension of a */
static
void GradSubDim(XTensor * node, bool isEfficient);
/* gradient for sub with one dimension: c = a - b * \beta
where the size of b is equal to that of one dimension of a */
static
void GradSubDim(XTensor * node, bool isEfficient);
/* gradient for sum: c = a + b * \beta */
static
......
......@@ -271,8 +271,8 @@ void XShapeGrad::GradMergeList(XTensor * node, bool isEfficient)
CheckNTErrors(income.tailNum > 0, "Wrong input tensor number for MERGE!");
XTensor * last = NULL;
XList smalls(income.tailNum);
XList smallsGrad(income.tailNum);
TensorList smalls(income.tailNum);
TensorList smallsGrad(income.tailNum);
bool mergeOnly = true;
for(int i = 0; i < income.tailNum; i++){
XTensor * tail = income.tails[i];
......@@ -440,7 +440,7 @@ void XShapeGrad::GradSplitListPost(XTensor * node, bool isEfficient)
/* we compute the gradient for current node, rather than for
child node, i.e., we use the outgoing edge here */
XLink &outgo = node->outgo;
XList splits(outgo.tailNum);
TensorList splits(outgo.tailNum);
int whereToSplit = -1;
int splitNum = 0;
......@@ -450,7 +450,7 @@ void XShapeGrad::GradSplitListPost(XTensor * node, bool isEfficient)
if(income.typeID == SHAPE_SPLIT_LIST){
int w = income.GetParamInt(0);
int splitID = income.GetParamInt(1);
if(whereToSplit < 0)
whereToSplit = w;
splitNum++;
......
......@@ -54,7 +54,7 @@ private:
static
void GradGather(XTensor * node, bool isEfficent);
/* gradient computation for dropout with indexs */
/* gradient computation for dropout with index: b = dropoutwithindex(a, index) */
static
void GradDropoutWithIndex(XTensor * node, bool isEfficent);
......
......@@ -37,16 +37,16 @@ struct XNet
unsigned int id;
/* tensor nodes of the network (in order) */
XList nodes;
TensorList nodes;
/* tensor nodes to keep gradient for output (e.g., SGD)*/
XList gradNodes;
TensorList gradNodes;
/* output nodes of the network */
XList outputs;
TensorList outputs;
/* input nodes of the network */
XList inputs;
TensorList inputs;
/* indicates whether the network just keeps the gradient for parameter tensors */
bool isGradEfficient;
......@@ -71,15 +71,15 @@ struct XNet
/* backward propagation to obtain gradient
with a number of root nodes */
void Backward(XList &roots, LOSS_FUNCTION_NAME loss = NOLOSS);
void Backward(TensorList &roots, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient
with a number of root nodes */
void Backward(XList &roots, XList &golds, LOSS_FUNCTION_NAME loss = NOLOSS);
void Backward(TensorList &roots, TensorList &golds, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward propagation to obtain gradient wrt. the loss/error function
with a number of root nodes */
void Backward(XList &roots, XList &golds, XList &paddings, LOSS_FUNCTION_NAME loss = NOLOSS);
void Backward(TensorList &roots, TensorList &golds, TensorList &paddings, LOSS_FUNCTION_NAME loss = NOLOSS);
/* backward computation for a given node */
void BackwardNode(XTensor * node, bool isEfficent = false);
......@@ -93,10 +93,10 @@ struct XNet
/* traverse the net and find the topological order by
depth-first search (Tarjan's algorithm) */
void Traverse(XList &roots);
void Traverse(TensorList &roots);
/* depth-first search given a node (Tarjan's algorithm for topological ordering) */
void TarjanVisit(XTensor * node, XList &orders, const unsigned int code);
void TarjanVisit(XTensor * node, TensorList &orders, const unsigned int code);
/* dump network information */
void Dump(FILE * file);
......
......@@ -51,14 +51,12 @@ initialize the model
>> myIgnored - number of position ignored in attention (from the begining)
>> myIsMasked - indicates whether the attention is with a mask
>> myDevID - device id
>> myMem - the memory pool
*/
void T2TAttention::InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID, XMem * myMem)
int myDevID)
{
devID = myDevID;
mem = myMem;
isMasked = myIsMasked;
ignored = myIgnored;
......@@ -71,11 +69,11 @@ void T2TAttention::InitModel(int argc, char ** argv,
LoadParamFloat(argc, argv, "attminmax", &minmax, 0.1F);
LoadParamFloat(argc, argv, "dropoutatt", &dropoutP, 0);
InitTensor2D(&wk, d, dk, X_FLOAT, devID, mem);
InitTensor2D(&wq, d, dk, X_FLOAT, devID, mem);
InitTensor2D(&wv, d, dv, X_FLOAT, devID, mem);
InitTensor2D(&wa, d, d, X_FLOAT, devID, mem);
InitTensor2D(&wbig, d, 3 * d, X_FLOAT, devID, mem);
InitTensor2DV2(&wk, d, dk, X_FLOAT, devID);
InitTensor2DV2(&wq, d, dk, X_FLOAT, devID);
InitTensor2DV2(&wv, d, dv, X_FLOAT, devID);
InitTensor2DV2(&wa, d, d, X_FLOAT, devID);
InitTensor2DV2(&wbig, d, 3 * d, X_FLOAT, devID);
float scale = 1.0F;
float finfoutk = (float)sqrt(6.0F * scale/(d + dk));
......@@ -127,7 +125,7 @@ XTensor T2TAttention::MakeBig(XTensor &kqv, XTensor &mask, bool isTraining)
XTensor q2;
XTensor v2;
XTensor kqv2;
XList split;
TensorList split;
kqv2 = MMul(kqv, wbig);
......@@ -135,9 +133,9 @@ XTensor T2TAttention::MakeBig(XTensor &kqv, XTensor &mask, bool isTraining)
int d2 = kqv2.GetDim(1);
int d3 = kqv2.GetDim(2) / 3;
InitTensor3D(&k2, d1, d2, d3, X_FLOAT, devID, mem);
InitTensor3D(&q2, d1, d2, d3, X_FLOAT, devID, mem);
InitTensor3D(&v2, d1, d2, d3, X_FLOAT, devID, mem);
InitTensor3DV2(&k2, d1, d2, d3, X_FLOAT, devID);
InitTensor3DV2(&q2, d1, d2, d3, X_FLOAT, devID);
InitTensor3DV2(&v2, d1, d2, d3, X_FLOAT, devID);
split.Add(&q2);
split.Add(&k2);
......
......@@ -42,9 +42,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* head number */
int nhead;
......@@ -61,7 +58,7 @@ public:
XTensor wa;
XTensor wbig;
/* size of transformed Q and K */
int dk;
......@@ -94,7 +91,7 @@ public:
/* initialize the model */
void InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID = -1, XMem * myMem = NULL);
int myDevID = -1);
/* make the network */
XTensor Make(XTensor &k, XTensor &q, XTensor &v, XTensor &mask, bool isTraining);
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2018, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-04-25
* it is cold today but i'll move to a warm place tomorrow :)
*/
#ifndef __T2TBATCHLOADER_H__
#define __T2TBATCHLOADER_H__
#include "../../network/XNet.h"
using namespace nts;
namespace transformer
{
#define MAX_SEQUENCE_LENGTH 1024 * 4
/* node to keep batch information */
struct BatchNode
{
/* begining position */
int beg;
/* end position */
int end;
/* maximum word number on the encoder side */
int maxEnc;
/* maximum word number on the decoder side */
int maxDec;
/* a key for sorting */
int key;
};
class T2TBatchLoader
{
public:
/* buffer for loading words */
int * buf;
/* another buffer */
int * buf2;
/* batch buf */
BatchNode * bufBatch;
/* buffer size */
int bufSize;
/* size of batch buffer */
int bufBatchSize;
/* length of each sequence */
int * seqLen;
/* another array */
int * seqLen2;
/* offset of the first word for each sequence */
int * seqOffset;
/* number of sequences in the buffer */
int nseqBuf;
/* offset for next sequence in the buffer */
int nextSeq;
/* offset for next batch */
int nextBatch;
/* indicates whether we double the </s> symbol for the output of lms */
bool isDoubledEnd;
/* indicates whether we use batchsize = max * sc
rather rather than batchsize = word-number, where max is the maximum
length and sc is the sentence number */
bool isSmallBatch;
/* counterpart of "isSmallBatch" */
bool isBigBatch;
/* randomize batches */
bool isRandomBatch;
/* bucket size */
int bucketSize;
public:
/* constructor */
T2TBatchLoader();
/* de-constructor */
~T2TBatchLoader();
/* initialization */
void Init(int argc, char ** argv);
/* load data to buffer */
int LoadBuf(FILE * file, bool isSorted, int step);
/* clear data buffer */
void ClearBuf();
/* set the random batch flag */
void SetRandomBatch(bool flag = true);
/* load a batch of sequences */
int LoadBatch(FILE * file, bool isLM,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs,
int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &ws, int &wCount,
int devID, bool isTraining);
/* load a batch of sequences (for language modeling) */
int LoadBatchLM(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs, int vs, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, bool isTraining);
/* load a batch of sequences (for machine translation) */
int LoadBatchMT(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &ws, int &wCount,
int devID, bool isTraining);
/* shuffle the data file */
void Shuffle(const char * srcFile, const char * tgtFile);
};
}
#endif
\ No newline at end of file
......@@ -31,6 +31,10 @@ namespace transformer
/* constructor */
AttDecoder::AttDecoder()
{
attentions = NULL;
fnns = NULL;
attLayerNorms = NULL;
fnnLayerNorms = NULL;
attentionsEnde = NULL;
attEndeLayerNorms = NULL;
}
......@@ -38,6 +42,10 @@ AttDecoder::AttDecoder()
/* de-constructor */
AttDecoder::~AttDecoder()
{
delete[] attentions;
delete[] fnns;
delete[] attLayerNorms;
delete[] fnnLayerNorms;
delete[] attentionsEnde;
delete[] attEndeLayerNorms;
}
......@@ -49,16 +57,14 @@ initialize the model
>> myIsMasked - indicates whether the masked attention is employed
>> myIgnored - number of positions ignored in attention (from the start)
>> myDevID - device id
>> myMem - the memory pool
*/
void AttDecoder::InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID, XMem * myMem)
int myDevID)
{
//AttEncoder::InitModel(argc, argv, myIsMasked, myIgnored, myDevID, myMem);
//AttEncoder::InitModel(argc, argv, myIsMasked, myIgnored, myDevID);
devID = myDevID;
mem = myMem;
ignored = myIgnored;
LoadParamInt(argc, argv, "nlayer", &nlayer, 6);
......@@ -68,10 +74,10 @@ void AttDecoder::InitModel(int argc, char ** argv,
LoadParamFloat(argc, argv, "dropout", &dropoutP, 0);
CheckNTErrors(nlayer >= 1, "We have one encoding layer at least!");
CheckNTErrors(vSize > 1, "set vocabulary size by \"-vsize\"");
CheckNTErrors(vSize > 1, "set vocabulary size by \"-vsizetgt\"");
/* embedding model */
embedder.InitModel(argc, argv, devID, mem, false);
embedder.InitModel(argc, argv, devID, false);
attentions = new T2TAttention[nlayer];
fnns = new T2TFNN[nlayer];
......@@ -82,12 +88,12 @@ void AttDecoder::InitModel(int argc, char ** argv,
/* initialize the stacked layers */
for (int i = 0; i < nlayer; i++) {
attentions[i].InitModel(argc, argv, myIsMasked, myIgnored, myDevID, myMem);
fnns[i].InitModel(argc, argv, myDevID, myMem);
attLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
fnnLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
attentionsEnde[i].InitModel(argc, argv, true, myIgnored, myDevID, myMem);
attEndeLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
attentions[i].InitModel(argc, argv, myIsMasked, myIgnored, myDevID);
fnns[i].InitModel(argc, argv, myDevID);
attLayerNorms[i].InitModel(argc, argv, myDevID);
fnnLayerNorms[i].InitModel(argc, argv, myDevID);
attentionsEnde[i].InitModel(argc, argv, true, myIgnored, myDevID);
attEndeLayerNorms[i].InitModel(argc, argv, myDevID);
}
}
......@@ -159,6 +165,8 @@ XTensor AttDecoder::Make(XTensor &inputDec, XTensor &outputEnc, XTensor &mask, X
/* layer normalization */
x = fnnLayerNorms[i].Make(res);
}
x.SetName(DECODING_NAME);
return x;
}
......
......@@ -26,6 +26,9 @@
namespace transformer
{
#define DECODING_NAME "decoding"
#define DECODING_INPUT_NAME "decoding_input"
class AttDecoder
{
......@@ -34,9 +37,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* layer number */
int nlayer;
......@@ -92,7 +92,7 @@ public:
/* initialize the model */
void InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID = -1, XMem * myMem = NULL);
int myDevID = -1);
/* make the decoding network */
XTensor Make(XTensor &inputDec, XTensor &outputEnc, XTensor &mask, XTensor &maskEncDec, bool isTraining);
......
......@@ -31,7 +31,6 @@ namespace transformer
T2TEmbedder::T2TEmbedder()
{
devID = -1;
mem = NULL;
vSize = -1;
maxLength = -1;
}
......@@ -46,12 +45,10 @@ initialize the model
>> argc - number of arguments
>> argv - list of pointers to the arguments
>> myDevID - device id
>> myMem - the memory pool
*/
void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem, bool isEnc)
void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, bool isEnc)
{
devID = myDevID;
mem = myMem;
if(isEnc){
LoadParamInt(argc, argv, "vsize", &vSize, -1);
......@@ -64,7 +61,7 @@ void T2TEmbedder::InitModel(int argc, char ** argv, int myDevID, XMem * myMem, b
LoadParamInt(argc, argv, "d", &eSize, DEFAULT_EMBEDDING_SIZE);
LoadParamInt(argc, argv, "d", &d, DEFAULT_EMBEDDING_SIZE);
InitTensor2D(&w, vSize, eSize, X_FLOAT, devID, mem);
InitTensor2DV2(&w, vSize, eSize, X_FLOAT, devID);
DTYPE v = 1.0F/(float)sqrt((float)eSize);
w.SetDataRandn(0, v);
......@@ -81,7 +78,7 @@ make positional embeddings (of size eSize * length)
*/
void T2TEmbedder::MakePosEmbedding(int eSize, int d, int length)
{
InitTensor2D(&posEmbeddingBase, length, eSize, X_FLOAT, devID, mem);
InitTensor2DV2(&posEmbeddingBase, length, eSize, X_FLOAT, devID);
float * data = new float[posEmbeddingBase.unitNum];
......@@ -145,9 +142,9 @@ XTensor T2TEmbedder::Make(XTensor &input)
/* we make positional embeddings first */
//if(!match){
if(true){
InitTensor(&posEmbedding, input.order + 1, dims, X_FLOAT, 1.0F, devID, mem);
InitTensorV2(&posEmbedding, input.order + 1, dims, X_FLOAT, devID);
XTensor * posTMP = NewTensorBuf(2, dims + 1, X_FLOAT, 1.0F, devID, mem);
XTensor * posTMP = NewTensorBufV2(2, dims + 1, X_FLOAT, devID);
_CopyValues(&posEmbeddingBase, 0, posTMP->unitNum, posTMP, 0);
_Unsqueeze(posTMP, &posEmbedding, 0, dims[0]);
......
......@@ -41,9 +41,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* vocabulary size */
int vSize;
......@@ -71,7 +68,7 @@ public:
~T2TEmbedder();
/* initialize the model */
void InitModel(int argc, char ** argv, int myDevID = -1, XMem * myMem = NULL, bool isEnc = true);
void InitModel(int argc, char ** argv, int myDevID = -1, bool isEnc = true);
/* make positional embeddings */
void MakePosEmbedding(int eSize, int d, int length);
......
......@@ -52,15 +52,12 @@ initialize the model
>> argv - list of pointers to the arguments
>> myIsMasked - indicates whether the masked attention is employed
>> myIgnored - number of positions ignored in attention (from the start)
>> myDevID - device id
>> myMem - the memory pool
*/
>> myDevID - device id*/
void AttEncoder::InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID, XMem * myMem)
int myDevID)
{
devID = myDevID;
mem = myMem;
ignored = myIgnored;
LoadParamInt(argc, argv, "nlayer", &nlayer, 6);
......@@ -73,7 +70,7 @@ void AttEncoder::InitModel(int argc, char ** argv,
CheckNTErrors(vSize > 1, "set vocabulary size by \"-vsize\"");
/* embedding model */
embedder.InitModel(argc, argv, devID, mem);
embedder.InitModel(argc, argv, devID);
attentions = new T2TAttention[nlayer];
fnns = new T2TFNN[nlayer];
......@@ -82,10 +79,10 @@ void AttEncoder::InitModel(int argc, char ** argv,
/* initialize the stacked layers */
for(int i = 0; i < nlayer; i++){
attentions[i].InitModel(argc, argv, myIsMasked, myIgnored, myDevID, myMem);
fnns[i].InitModel(argc, argv, myDevID, myMem);
attLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
fnnLayerNorms[i].InitModel(argc, argv, myDevID, myMem);
attentions[i].InitModel(argc, argv, myIsMasked, myIgnored, myDevID);
fnns[i].InitModel(argc, argv, myDevID);
attLayerNorms[i].InitModel(argc, argv, myDevID);
fnnLayerNorms[i].InitModel(argc, argv, myDevID);
}
}
......@@ -139,6 +136,9 @@ XTensor AttEncoder::Make(XTensor &input, XTensor &mask, XTensor &maskEncDec, boo
/* layer normalization */
x = fnnLayerNorms[i].Make(res);
}
x.SetName(ENCODING_NAME);
input.SetName(ENCODING_INPUT_NAME);
return x;
}
......
......@@ -32,6 +32,9 @@ using namespace nts;
namespace transformer
{
#define ENCODING_NAME "encoding"
#define ENCODING_INPUT_NAME "encoding_input"
/*
base class of the encoder
......@@ -62,9 +65,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* layer number */
int nlayer;
......@@ -115,7 +115,7 @@ public:
/* initialize the model */
void InitModel(int argc, char ** argv,
bool myIsMasked, int myIgnored,
int myDevID = -1, XMem * myMem = NULL);
int myDevID = -1);
/* make the encoding network */
XTensor Make(XTensor &input, XTensor &mask, XTensor &maskEncDec, bool isTraining);
......
......@@ -47,12 +47,10 @@ initialize the model
>> argc - number of arguments
>> argv - list of pointers to the arguments
>> myDevID - device id
>> myMem - the memory pool
*/
void T2TFNN::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
void T2TFNN::InitModel(int argc, char ** argv, int myDevID)
{
devID = myDevID;
mem = myMem;
float minmax = 0;
......@@ -62,11 +60,11 @@ void T2TFNN::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
LoadParamFloat(argc, argv, "fnnminmax", &minmax, 0.1F);
LoadParamFloat(argc, argv, "dropoutfnn", &dropoutP, 0);
InitTensor2D(&w1, inSize, hSize, X_FLOAT, devID, mem);
InitTensor1D(&b1, hSize, X_FLOAT, devID, mem);
InitTensor2DV2(&w1, inSize, hSize, X_FLOAT, devID);
InitTensor1DV2(&b1, hSize, X_FLOAT, devID);
InitTensor2D(&w2, hSize, outSize, X_FLOAT, devID, mem);
InitTensor1D(&b2, outSize, X_FLOAT, devID, mem);
InitTensor2DV2(&w2, hSize, outSize, X_FLOAT, devID);
InitTensor1DV2(&b2, outSize, X_FLOAT, devID);
float scale = 1.0F;
float finfout1 = (float)sqrt(6.0F * scale/(inSize + hSize));
......
......@@ -36,9 +36,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* size of input vector */
int inSize;
......@@ -72,7 +69,7 @@ public:
~T2TFNN();
/* initialize the model */
void InitModel(int argc, char ** argv, int myDevID = -1, XMem * myMem = NULL);
void InitModel(int argc, char ** argv, int myDevID = -1);
/* make the network */
XTensor Make(XTensor &input, bool isTraining);
......
......@@ -32,7 +32,6 @@ namespace transformer
T2TLN::T2TLN()
{
devID = -1;
mem = NULL;
d = 0;
}
......@@ -46,18 +45,16 @@ initialize the model
>> argc - number of arguments
>> argv - list of pointers to the arguments
>> myDevID - device id
>> myMem - the memory pool
*/
void T2TLN::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
void T2TLN::InitModel(int argc, char ** argv, int myDevID)
{
devID = myDevID;
mem = myMem;
d = 0;
LoadParamInt(argc, argv, "d", &d, DEFAULT_EMBEDDING_SIZE);
InitTensor1D(&w, d, X_FLOAT, devID, mem);
InitTensor1D(&b, d, X_FLOAT, devID, mem);
InitTensor1DV2(&w, d, X_FLOAT, devID);
InitTensor1DV2(&b, d, X_FLOAT, devID);
w.SetDataRand(1.0F, 1.0F);
b.SetZeroAll();
......
......@@ -36,9 +36,6 @@ class T2TLN
public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* the transformation matrix w */
XTensor w;
......@@ -57,7 +54,7 @@ public:
~T2TLN();
/* initialize the model */
void InitModel(int argc, char ** argv, int myDevID = -1, XMem * myMem = NULL);
void InitModel(int argc, char ** argv, int myDevID = -1);
/* make the network */
XTensor Make(XTensor &input);
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../../tensor/core/CHeader.h"
#include "T2TLengthPenalty.h"
using namespace nts;
namespace transformer
{
/*
GNMT-like length penalty: pl = ((5 + n)/(5 + 1))^\alpha
where n = length of the sequence
>> length - length of the sequence (for each entry)
>> alpha - the parameter controls the length preference
<< return - length penaltyof the sequence (for each entry)
*/
XTensor T2TLengthPenalizer::GNMT(const XTensor & length, float alpha)
{
XTensor base;
XTensor lp;
//base = ScaleAndShift(ScaleAndShift(length, 0, 5.0F), 1.0F/(5 + 1));
base = (length + 5)/(1 + 5);
lp = Power(base, alpha);
return lp;
}
}
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-04-08
* Start of a new week - I just finished several documents.
* Writing document is harder than writing code :)
*/
#ifndef __SUMBYCOLUMNTV_H__
#define __SUMBYCOLUMNTV_H__
#ifndef __T2TLENGTHPENALTY_H__
#define __T2TLENGTHPENALTY_H__
#include "../../XTensor.h"
#include "../../tensor/XTensor.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
using namespace nts;
/* sum of a tensor and a (column) vector */
void _SumByColumnTV(const XTensor * a, const XTensor * b, XTensor * c = NULL, DTYPE beta = (DTYPE)1.0);
namespace transformer
{
} // namespace nts(NiuTrans.Tensor)
/* We intend to penalize short sequences because they have higher score
in product of a sequence of probability-like terms and have more chances
to beat others in search. */
class T2TLengthPenalizer
{
public:
/* GNMT-like length penalty: pl = ((5 + n)/(5 + 1))^\alpha
where n = length of the sequence */
static
XTensor GNMT(const XTensor & length, float alpha);
};
#endif // __SUMBYCOLUMNTV_H__
}
#endif
......@@ -40,9 +40,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* the encoder */
AttEncoder * encoder;
......@@ -98,7 +95,7 @@ public:
XTensor &maskDec, XTensor &maskEncDec);
/* get parameter matrics */
void GetParams(XList &list);
void GetParams(TensorList &list);
/* dump the parameters */
void Dump(const char * fn);
......
......@@ -31,7 +31,6 @@ namespace transformer
T2TOutput::T2TOutput()
{
devID = -1;
mem = NULL;
vSize = -1;
inSize = -1;
hSize = -1;
......@@ -47,12 +46,10 @@ initialize the model
>> argc - number of arguments
>> argv - list of pointers to the arguments
>> myDevID - device id
>> myMem - the memory pool
*/
void T2TOutput::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
void T2TOutput::InitModel(int argc, char ** argv, int myDevID)
{
devID = myDevID;
mem = myMem;
float minmax = 0;
......@@ -61,7 +58,7 @@ void T2TOutput::InitModel(int argc, char ** argv, int myDevID, XMem * myMem)
LoadParamInt(argc, argv, "d", &hSize, DEFAULT_EMBEDDING_SIZE);
LoadParamFloat(argc, argv, "outputminmax", &minmax, 0.08F);
InitTensor2D(&w, hSize, vSize, X_FLOAT, devID, mem);
InitTensor2DV2(&w, hSize, vSize, X_FLOAT, devID);
float scale = 1.0F;
float finfout = (float)sqrt(6.0F * scale/(hSize + vSize));
......@@ -95,6 +92,7 @@ void T2TOutput::Make(XTensor &input, XTensor &output)
//output = LogSoftmax(MMul(x, w), -1);
output = Softmax(MMul(x, w), -1);
output.SetName(OUTPUT_NAME);
}
}
......@@ -28,6 +28,8 @@ using namespace nts;
namespace transformer
{
#define OUTPUT_NAME "output"
/* output layer */
class T2TOutput
......@@ -36,9 +38,6 @@ public:
/* device id */
int devID;
/* memory pool */
XMem * mem;
/* vocabulary size */
int vSize;
......@@ -59,7 +58,7 @@ public:
~T2TOutput();
/* initialize the model */
void InitModel(int argc, char ** argv, int myDevID = -1, XMem * myMem = NULL);
void InitModel(int argc, char ** argv, int myDevID = -1);
/* make the network */
XTensor Make(XTensor &input);
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-03-13
*/
#include "T2TPredictor.h"
#include "../../tensor/core/CHeader.h"
using namespace nts;
namespace transformer
{
/* constructor */
T2TStateBundle::T2TStateBundle()
{
states = NULL;
isStart = false;
}
/* de-constructor */
T2TStateBundle::~T2TStateBundle()
{
if(states != NULL)
delete[] states;
}
/*
create states
>> num - number of states
*/
void T2TStateBundle::MakeStates(int num)
{
CheckNTErrors(num > 0, "invalid number");
if(states != NULL)
delete[] states;
states = new T2TState[num];
for(int i = 0; i < num; i++){
states[i].prediction = -1;
states[i].pid = T2T_PID_EMPTY;
states[i].isEnd = false;
states[i].isStart = false;
states[i].isCompleted = false;
states[i].prob = 0;
states[i].probPath = 0;
states[i].modelScore = 0;
states[i].nstep = 0;
states[i].last = NULL;
}
stateNum = num;
}
/* constructor */
T2TPredictor::T2TPredictor()
{
startSymbol = -1;
}
/* de-constructor */
T2TPredictor::~T2TPredictor()
{
}
/*
create an initial state
>> model - the t2t model
>> top - the top-most layer of the network
>> input - input of the network
>> beamSize - beam size
>> state - the state to be initialized
*/
void T2TPredictor::Create(T2TModel * model, XTensor * top, const XTensor * input, int beamSize, T2TStateBundle * state)
{
state->layersEnc.Clear();
state->layersDec.Clear();
XTensor * encoding = XLink::SearchNode(top, ENCODING_NAME);
CheckNTErrors(encoding != NULL, "No encoding layers found!");
state->layersEnc.Add(encoding);
state->layersDec.Add(NULL);
int dims[MAX_TENSOR_DIM_NUM];
for (int i = 0; i < input->order - 1; i++)
dims[i] = input->GetDim(i);
dims[input->order - 1] = beamSize;
InitTensorV2(&state->probPath, input->order, dims, X_FLOAT, input->devID);
InitTensorV2(&state->nstep, input->order, dims, X_FLOAT, input->devID);
InitTensorV2(&state->endMark, input->order, dims, X_INT, input->devID);
state->probPath.SetZeroAll();
state->nstep.SetZeroAll();
state->endMark.SetZeroAll();
state->stateNum = 0;
}
/*
set start symbol
>> symbol - the symbol (in integer)
*/
void T2TPredictor::SetStartSymbol(int symbol)
{
startSymbol = symbol;
}
/*
read a state
>> model - the t2t model that keeps the network created so far
>> state - a set of states. It keeps
1) hypotheses (states)
2) probablities of hypotheses
3) parts of the network for expanding toward the next state
*/
void T2TPredictor::Read(T2TModel * model, T2TStateBundle * state)
{
m = model;
s = state;
}
/*
predict the next state
>> next - next states (assuming that the current state has been read)
>> encoding - encoder output
>> inputEnc - input of the encoder
>> paddingEnc - padding of the encoder
*/
void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding,
XTensor * inputEnc, XTensor * paddingEnc)
{
int dims[MAX_TENSOR_DIM_NUM];
next->layersEnc.Clear();
next->layersDec.Clear();
AttDecoder &decoder = *m->decoder;
/* word indices of previous positions */
XTensor * inputLast = (XTensor*)s->layersDec.GetItem(0);
/* word indices of positions up to next state */
XTensor inputDec;
/* the first token */
XTensor first;
CheckNTErrors(inputEnc->order >= 2, "Wrong order of the tensor!");
for(int i = 0; i < inputEnc->order - 1; i++)
dims[i] = inputEnc->GetDim(i);
dims[inputEnc->order - 1] = 1;
InitTensorV2(&first, inputEnc->order, dims, X_INT, inputEnc->devID);
_SetDataFixed(&first, startSymbol);
/* add a new word into the input sequence of the decoder side */
if (inputLast == NULL) {
inputDec = Identity(first);
}
else{
inputDec = GeneratePaths(s);
inputDec.SetDevice(inputEnc->devID);
inputDec = Concatenate(first, inputDec, inputDec.order - 1);
}
/* prediction probabilities */
XTensor &output = next->prob;
XTensor decoding;
XTensor decodingStep;
for(int i = 0; i < inputDec.order - 1; i++)
dims[i] = inputDec.GetDim(i);
dims[inputDec.order - 1] = inputDec.GetDim(-1);
XTensor paddingDec;
InitTensorV2(&paddingDec, inputDec.order, dims, X_INT, paddingEnc->devID);
SetDataFixed(paddingDec, 1);
XTensor maskDec;
XTensor maskEncDec;
/* decoder mask */
m->MakeMTMaskDec(*inputEnc, inputDec, *paddingEnc, paddingDec, maskDec, maskEncDec);
/* make the decoding network */
decoding = decoder.Make(inputDec, *encoding, maskDec, maskEncDec, false);
XTensor selectSrc;
XTensor selectTgt;
CheckNTErrors(decoding.order >= 2, "The tensor must be of order 2 or larger!");
int stride = decoding.GetDim(decoding.order - 2);
InitTensor1DV2(&selectSrc, 1, X_INT);
InitTensor1DV2(&selectTgt, 1, X_INT);
selectSrc.SetInt(stride - 1, 0);
selectTgt.SetInt(0, 0);
selectSrc.SetDevice(decoding.devID);
selectTgt.SetDevice(decoding.devID);
/* the decoder output of the last position */
decodingStep = CopyIndexed(decoding, decoding.order - 2, selectSrc, selectTgt);
/* generate the output probabilities */
m->outputLayer->Make(decodingStep, output);
next->layersEnc.AddList(&s->layersEnc);
next->layersDec.Add(&inputDec);
next->layersDec.Add(&output);
}
/*
generate paths up to the states of the current step
>> state - state bundle of the current step
*/
XTensor T2TPredictor::GeneratePaths(T2TStateBundle * state)
{
CheckNTErrors(state->stateNum >= 0, "Illegal state!");
int distance = -1;
for(int i = 0; i < state->stateNum; i++){
T2TState * cur = state->states + i;
int nsteps = 0;
while(cur != NULL){
nsteps++;
cur = cur->last;
}
if(nsteps > distance)
distance = nsteps;
}
XTensor path;
InitTensor2DV2(&path, state->stateNum, distance, X_INT);
path.SetZeroAll();
for(int i = 0; i < state->stateNum; i++){
T2TState * cur = state->states + i;
int nsteps = 0;
while(cur != NULL){
nsteps++;
path.Set2DInt(cur->prediction, i, distance - nsteps);
cur = cur->last;
}
}
return path;
}
}
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-03-13
* This is the first source file I create in 2019 - new start!
*/
#ifndef __T2TPREDICTOR_H__
#define __T2TPREDICTOR_H__
#include "T2TModel.h"
#include "T2TLengthPenalty.h"
namespace transformer
{
#define T2T_PID_EMPTY -1
/* state for search. It keeps the path (back-pointer), prediction distribution,
and etc. It can be regarded as a hypothsis in translation. */
class T2TState
{
public:
/* we assume that the prediction is an integer */
int prediction;
/* id of the problem. One can regard it as the sentence id when we
translate a number of sentences in the batched manner. The hypothesis
is empty if id = -1 */
int pid;
/* indicates whether the state is an end */
bool isEnd;
/* indicates whether the state is the start */
bool isStart;
/* indicates whether the state is completed */
bool isCompleted;
/* probability of every prediction (last state of the path) */
float prob;
/* probability of every path */
float probPath;
/* model score of every path. A model score = path probability + some other stuff */
float modelScore;
/* nubmer of steps we go over so far */
int nstep;
/* pointer to the previous state */
T2TState * last;
};
/* a bundle of states */
class T2TStateBundle
{
public:
/* predictions */
XTensor prediction;
/* id of the previous state that generates the current one */
XTensor preID;
/* mark that indicates whether each hypothesis is completed */
XTensor endMark;
/* probability of every prediction (last state of the path) */
XTensor prob;
/* probability of every path */
XTensor probPath;
/* model score of every path */
XTensor modelScore;
/* step number of each hypothesis */
XTensor nstep;
/* layers on the encoder side. We actually use the encoder output instead
of all hidden layers. */
TensorList layersEnc;
/* layers on the decoder side */
TensorList layersDec;
/* list of states */
T2TState * states;
/* number of states */
int stateNum;
/* indicates whether it is the first state */
bool isStart;
public:
/* constructor */
T2TStateBundle();
/* de-constructor */
~T2TStateBundle();
/* create states */
void MakeStates(int num);
};
/* The predictor reads the current state and then predicts the next.
It is exactly the same procedure of MT inference -
we get the state of previous words and then generate the next word.
Here, a state can be regared as the representation of words (word
indices, hidden states, embeddings and etc.). */
class T2TPredictor
{
private:
/* pointer to the transformer model */
T2TModel * m;
/* current state */
T2TStateBundle * s;
/* start symbol */
int startSymbol;
public:
/* constructor */
T2TPredictor();
/* de-constructor */
~T2TPredictor();
/* create an initial state */
void Create(T2TModel * model, XTensor * top, const XTensor * input, int beamSize, T2TStateBundle * state);
/* set the start symbol */
void SetStartSymbol(int symbol);
/* read a state */
void Read(T2TModel * model, T2TStateBundle * state);
/* predict the next state */
void Predict(T2TStateBundle * next, XTensor * encoding, XTensor * inputEnc, XTensor * paddingEnc);
/* generate paths up to the states of the current step */
XTensor GeneratePaths(T2TStateBundle * state);
};
}
#endif
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-03-27
*/
#ifndef __T2TSEARCH_H__
#define __T2TSEARCH_H__
#include "T2TModel.h"
#include "T2TPredictor.h"
namespace transformer
{
/* The class orgnizes the search process. It calls "predictors" to generate
distributions of the predictions and prunes the search space by beam pruning.
This makes a graph where each path respresents a translation hypothsis.
The output can be the path with the highest model score. */
class T2TSearch
{
private:
/* the alpha parameter controls the length preference */
float alpha;
/* predictor */
T2TPredictor predictor;
/* max length of the generated sequence */
int maxLength;
/* beam size */
int beamSize;
/* batch size */
int batchSize;
/* we keep the final hypotheses in a heap for each sentence in the batch. */
XHeap<MIN_HEAP, float> * fullHypos;
/* array of the end symbols */
int * endSymbols;
/* number of the end symbols */
int endSymbolNum;
/* start symbol */
int startSymbol;
public:
/* constructor */
T2TSearch();
/* de-constructor */
~T2TSearch();
/* initialize the model */
void Init(int argc, char ** argv);
/* search for the most promising states */
void Search(T2TModel * model, XTensor * input, XTensor * padding, XTensor * output);
/* preparation */
void Prepare(int myBatchSize,int myBeamSize);
/* compute the model score for each hypothesis */
void Score(T2TStateBundle * prev, T2TStateBundle * beam);
/* generate token indices via beam pruning */
void Generate(T2TStateBundle * beam);
/* expand the search graph */
void Expand(T2TStateBundle * prev, T2TStateBundle * beam);
/* collect hypotheses with ending symbol */
void Collect(T2TStateBundle * beam);
/* fill the hypotheis heap with incomplete hypothses */
void FillHeap(T2TStateBundle * beam);
/* save the output sequences in a tensor */
void Dump(XTensor * output);
/* check if the token is an end symbol */
bool IsEnd(int token);
/* set end symbols for search */
void SetEnd(const int * tokens, const int tokenNum);
/* make a mask to prevent duplicated entries in beam expansion for the first position */
XTensor MakeFirstMask(T2TStateBundle * beam);
};
}
#endif
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-03-27
*/
#include <math.h>
#include "T2TUtility.h"
#include "T2TTester.h"
#include "T2TSearch.h"
#include "../../tensor/XUtility.h"
#include "../../tensor/core/CHeader.h"
#include "../../network/XNoder.h"
using namespace nts;
namespace transformer
{
/* constructor */
T2TTester::T2TTester()
{
}
/* de-constructor */
T2TTester::~T2TTester()
{
}
/* initialize the model */
void T2TTester::Init(int argc, char ** argv)
{
LoadParamInt(argc, argv, "vsize", &vSize, 1);
LoadParamInt(argc, argv, "vsizetgt", &vSizeTgt, vSize);
batchLoader.Init(argc, argv);
seacher.Init(argc, argv);
}
/*
test the model
>> fn - test data file
>> ofn - output data file
>> model - model that is trained
*/
void T2TTester::Test(const char * fn, const char * ofn, T2TModel * model)
{
int wc = 0;
int ws = 0;
int wordCount = 0;
int wordCountTotal = 0;
int sentCount = 0;
int batchCount = 0;
float loss = 0;
/* data files */
FILE * file = fopen(fn, "rb");
CheckNTErrors(file, "Cannot read the test file");
FILE * ofile = fopen(ofn, "wb");
CheckNTErrors(ofile, "Cannot open the output file");
int devID = model->devID;
XNet net;
double startT = GetClockSec();
wordCount = 0;
/* batch of input sequences */
XTensor batchEnc;
XTensor batchDec;
/* label */
XTensor label;
/* padding */
XTensor paddingEnc;
XTensor paddingDec;
/* gold standard */
XTensor gold;
/* an array that keeps the sequences */
int * seqs = new int[MILLION];
batchLoader.SetRandomBatch(false);
batchLoader.ClearBuf();
while(batchLoader.LoadBatch(file, model->isLM,
&batchEnc, &paddingEnc, &paddingDec, &paddingDec, &gold, &label,
seqs, vSize, vSizeTgt,
1, 1, false, ws, wc, devID, false))
{
CheckNTErrors(batchEnc.order == 2, "wrong tensor order of the sequence batch!");
CheckNTErrors(!model->isLM, "Only MT model is supported!");
XTensor output;
seacher.Search(model, &batchEnc, &paddingEnc, &output);
Dump(ofile, &output);
float prob = 0;
loss += -prob;
wc = batchEnc.GetDim(-1);
wordCount += wc;
wordCountTotal += wc;
sentCount += batchEnc.GetDim(-2);
batchCount += 1;
if (batchCount % 1 == 0) {
double elapsed = GetClockSec() - startT;
XPRINT3(0, stderr,
"[INFO] elapsed=%.1fs, sentence=%d, sword=%d\n",
elapsed, sentCount, wordCount);
}
}
fclose(file);
fclose(ofile);
delete[] seqs;
double elapsed = GetClockSec() - startT;
XPRINT3(0, stderr, "[INFO] test finished (took %.1fs, word=%d, and ppl=%.3f)\n",
elapsed,wordCountTotal, exp(loss/wordCount));
}
/*
dump the result into the file
>> file - data file
>> output - output tensor
*/
void T2TTester::Dump(FILE * file, XTensor * output)
{
int seqLength = output->GetDim(-1);
for (int i = 0; i < output->unitNum; i += seqLength) {
for (int j = 0; j < seqLength; j++) {
int w = output->GetInt(i + j);
fprintf(file, "%d ", w);
if (w < 0)
break;
}
fprintf(file, "\n");
}
}
}
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2019-03-27
* A week with no trips :)
*/
#ifndef __T2TTESTER_H__
#define __T2TTESTER_H__
#include "T2TSearch.h"
#include "T2TBatchLoader.h"
namespace transformer
{
/* This class translates test sentences with a trained model. */
class T2TTester
{
public:
/* vocabulary size of the source side */
int vSize;
/* vocabulary size of the target side */
int vSizeTgt;
/* for batching */
T2TBatchLoader batchLoader;
/* decoder for inference */
T2TSearch seacher;
public:
/* constructor */
T2TTester();
/* de-constructor */
~T2TTester();
/* initialize the model */
void Init(int argc, char ** argv);
/* test the model */
void Test(const char * fn, const char * ofn, T2TModel * model);
/* dump the result into the file */
void Dump(FILE * file, XTensor * output);
};
}
#endif
\ No newline at end of file
......@@ -23,35 +23,14 @@
#define __T2TTRAINER_H__
#include "T2TModel.h"
#include "T2TBatchLoader.h"
#include "../../tensor/function/FHeader.h"
#define MAX_SEQUENCE_LENGTH 1024 * 4
using namespace nts;
namespace transformer
{
/* node to keep batch information */
struct BatchNode
{
/* begining position */
int beg;
/* end position */
int end;
/* maximum word number on the encoder side */
int maxEnc;
/* maximum word number on the decoder side */
int maxDec;
/* a key for sorting */
int key;
};
/* trainer of the T2T model */
class T2TTrainer
{
......@@ -61,42 +40,6 @@ public:
/* parameter array */
char ** argArray;
/* buffer for loading words */
int * buf;
/* another buffer */
int * buf2;
/* batch buf */
BatchNode * bufBatch;
/* buffer size */
int bufSize;
/* size of batch buffer */
int bufBatchSize;
/* length of each sequence */
int * seqLen;
/* another array */
int * seqLen2;
/* offset of the first word for each sequence */
int * seqOffset;
/* number of sequences in the buffer */
int nseqBuf;
/* offset for next sequence in the buffer */
int nextSeq;
/* offset for next batch */
int nextBatch;
/* indicates whether the sequence is sorted by length */
bool isLenSorted;
/* dimension size of each inner layer */
int d;
......@@ -139,10 +82,10 @@ public:
float adamBeta2T;
/* list of the moment of the parameter matrics */
XList moments;
TensorList moments;
/* list of the 2nd order moment of the parameter matrics */
XList moments2nd;
TensorList moments2nd;
/* indicates whether the data file is shuffled for training */
bool isShuffled;
......@@ -158,26 +101,15 @@ public:
/* number of batches on which we do model update */
int updateStep;
/* indicates whether we double the </s> symbol for the output of lms */
bool isDoubledEnd;
/* indicates whether we use batchsize = max * sc
rather rather than batchsize = word-number, where max is the maximum
length and sc is the sentence number */
bool isSmallBatch;
/* counterpart of "isSmallBatch" */
bool isBigBatch;
/* randomize batches */
bool isRandomBatch;
/* indicates whether we intend to debug the net */
bool isDebugged;
/* bucket size */
int bucketSize;
/* indicates whether the sequence is sorted by length */
bool isLenSorted;
/* for batching */
T2TBatchLoader batchLoader;
public:
/* constructor */
......@@ -197,46 +129,6 @@ public:
/* make a checkpoint */
void MakeCheckpoint(T2TModel * model, const char * validFN, const char * modelFN, const char * label, int id);
/* load data to buffer */
int LoadBuf(FILE * file, bool isSorted, int step);
/* clear data buffer */
void ClearBuf();
/* load a batch of sequences */
int LoadBatch(FILE * file, bool isLM,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs,
int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &ws, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for language modeling) */
int LoadBatchLM(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs, int vs, int sBatch, int wBatch,
bool isSorted, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* load a batch of sequences (for machine translation) */
int LoadBatchMT(FILE * file,
XTensor * batchEnc, XTensor * paddingEnc,
XTensor * batchDec, XTensor * paddingDec,
XTensor * gold, XTensor * label,
int * seqs, int vsEnc, int vsDec, int sBatch, int wBatch,
bool isSorted, int &ws, int &wCount,
int devID, XMem * mem,
bool isTraining);
/* shuffle the data file */
void Shuffle(const char * srcFile, const char * tgtFile);
/* get word probabilities for a batch of sequences */
float GetProb(XTensor * output, XTensor * gold, XTensor * wordProbs);
......
......@@ -25,6 +25,8 @@
#include "T2TModel.h"
#include "T2TUtility.h"
#include "T2TTrainer.h"
#include "T2TPredictor.h"
#include "T2TTester.h"
#include "../../tensor/XDevice.h"
#include "../../tensor/XUtility.h"
#include "../../tensor/XGlobal.h"
......@@ -47,6 +49,7 @@ int TransformerMain(int argc, const char ** argv)
ShowParams(argc, args);
bool isBeamSearch = false;
char * trainFN = new char[MAX_LINE_LENGTH];
char * modelFN = new char[MAX_LINE_LENGTH];
char * testFN = new char[MAX_LINE_LENGTH];
......@@ -56,6 +59,7 @@ int TransformerMain(int argc, const char ** argv)
LoadParamString(argc, args, "model", modelFN, "");
LoadParamString(argc, args, "test", testFN, "");
LoadParamString(argc, args, "output", outputFN, "");
LoadParamBool(argc, args, "beamsearch", &isBeamSearch, false);
srand((unsigned int)time(NULL));
......@@ -64,28 +68,35 @@ int TransformerMain(int argc, const char ** argv)
T2TModel model;
model.InitModel(argc, args);
//if(strcmp(modelFN, ""))
// model.Read(modelFN);
/* learn model parameters */
if(strcmp(trainFN, ""))
trainer.Train(trainFN, testFN, strcmp(modelFN, "") ? modelFN : "checkpoint.model", &model);
/* save the final model */
//if(strcmp(modelFN, "") && strcmp(trainFN, ""))
//model.Dump(modelFN);
if(strcmp(modelFN, "") && strcmp(trainFN, ""))
model.Dump(modelFN);
/* load the model if neccessary */
//if(strcmp(modelFN, ""))
//model.Read(modelFN);
T2TTrainer tester;
tester.Init(argc, args);
if(strcmp(modelFN, ""))
model.Read(modelFN);
/* test the model on the new data */
if(strcmp(testFN, "") && strcmp(outputFN, ""))
tester.Test(testFN, outputFN, &model);
if(strcmp(testFN, "") && strcmp(outputFN, "")){
/* beam search */
if(isBeamSearch){
T2TTester searcher;
searcher.Init(argc, args);
searcher.Test(testFN, outputFN, &model);
}
/* forced decoding */
else{
T2TTrainer tester;
tester.Init(argc, args);
tester.Test(testFN, outputFN, &model);
}
}
delete[] trainFN;
delete[] modelFN;
......
......@@ -274,7 +274,7 @@ void T2TTest2()
//XTensor * probs = NewTensor(3, dimSize, X_FLOAT, 1.0F, -1);
//myRead(probs, "probs.txt", " ");
_SetDataFixedFloat(probs, 1.0F);
_SetDataFixed(probs, 1.0F);
probs->Reshape(1, probs->unitNum);
......
......@@ -60,7 +60,7 @@ TENSOR_DATA_TYPE GetDataType(const char * typeName)
}
}
/****************************************************
/*
Below is for calling CPU BLAS for fast matrix operations
I'm not sure how fast it is. But it seems that other
guys are crazy about this. So I decided to have a try.
......@@ -81,35 +81,4 @@ _XINLINE_ float Float16ToFloat(unsigned short h)
return f;
}
/*
data type conversion
>> devID - device id
>> s - source data array
>> typeS - source data type
>> t - target data array
>> typeT - target data type
>> size - number of the items in s (and t)
*/
void ConvertDataType(int devID, void * s, TENSOR_DATA_TYPE typeS, void * t, TENSOR_DATA_TYPE typeT, int size)
{
CheckNTErrors((devID < 0), "This code must be run on CPUs!");
if(typeS == typeT)
return;
if(typeS == X_FLOAT && typeT == X_FLOAT16){
for(int i = 0; i < size; i++){
((unsigned short*)t)[i] = FloatToFloat16(((float*)s)[i]);
}
}
else if(typeS == X_FLOAT16 && typeT == X_FLOAT){
for(int i = 0; i < size; i++){
((float*)t)[i] = Float16ToFloat(((unsigned short*)s)[i]);
}
}
else{
ShowNTErrors("Unsupported data types for conversion!");
}
}
} /* end of the nts (NiuTrans.Tensor) namespace */
......@@ -49,15 +49,6 @@ extern TENSOR_DATA_TYPE GetDataType(const char * typeName);
/* data conversion (for lower precision computation) */
unsigned short FloatToFloat16(float f);
float Float16ToFloat(unsigned short h);
void ConvertDataType(int devID,
void * s, TENSOR_DATA_TYPE typeS,
void * t, TENSOR_DATA_TYPE typeT, int size);
#ifdef USE_CUDA
void CudaConvertDataType(int devID,
void * s, TENSOR_DATA_TYPE typeS,
void * t, TENSOR_DATA_TYPE typeT, int size);
#endif
} /* end of the nts (NiuTrans.Tensor) namespace */
......
......@@ -201,7 +201,8 @@ void XDevice::SetGPUDevice(int devID)
cudaError_t error = cudaSetDevice(devID);
if (error != cudaSuccess){
fprintf(stderr, "Error! Calling cudaSetDevice(%d) fails(%d:%s)\n", devID, error, cudaGetErrorString(error));
fprintf(stderr, "Error! Calling cudaSetDevice(%d) fails(%d:%s)\n",
devID, error, cudaGetErrorString(error));
exit(1);
}
#else
......@@ -216,7 +217,7 @@ void XDevice::SetGPUDeviceFast(int devID)
SetFastFlags();
}
/* switch to a get current dev */
/* get the id of the current GPU device */
int XDevice::GetGPUDevice()
{
#ifdef USE_CUDA
......@@ -224,7 +225,8 @@ int XDevice::GetGPUDevice()
cudaError_t error = cudaGetDevice(&devID);
if (error != cudaSuccess){
fprintf(stderr, "Error! Calling cudaGetDevice(%d) fails(%d:%s)\n", devID, error, cudaGetErrorString(error));
fprintf(stderr, "Error! Calling cudaGetDevice(%d) fails(%d:%s)\n",
devID, error, cudaGetErrorString(error));
exit(1);
}
......@@ -248,7 +250,7 @@ void XDevice::SetFastFlags()
#endif
}
/* reset cuda flag for more efficient cuda execution (all devices) */
/* reset the cuda flag for more efficient cuda execution (all devices) */
void XDevice::SetFastFlagsAllDevices()
{
#ifdef USE_CUDA
......@@ -266,10 +268,6 @@ XDevManager::XDevManager()
{
Clear();
Init();
#ifndef USE_CPP11
fprintf(stderr, "Warning!!! c++ 11 is RECOMMENDED for compilation.\n");
#endif
}
/* de-constructor */
......@@ -278,7 +276,7 @@ XDevManager::~XDevManager()
}
/* initialize it and get the CPU and GPU information */
/* initialization */
void XDevManager::Init()
{
srand((unsigned int)time(NULL));
......@@ -322,7 +320,7 @@ void XDevManager::Clear()
#ifdef USE_CUDA
/* get the handle of GPU */
/* get the handle of a given GPU */
cublasHandle_t * XDevManager::GetCudaHandle(const int devID)
{
CheckNTErrors(devID < nGPU, "index of GPU is out of range.");
......@@ -330,7 +328,7 @@ cublasHandle_t * XDevManager::GetCudaHandle(const int devID)
return GPUs[devID].GetCublasHandle();
}
/* get the stream of cuda */
/* get the stream of a given GPU */
cudaStream_t * XDevManager::GetCudaStream(const int devID)
{
CheckNTErrors(devID < nGPU, "index of GPU is out of range.");
......@@ -478,7 +476,7 @@ split a string
>> items - splitting result
<< return - how many items are there
*/
int SplitALine(char * inputString, const char * seperator, XList * items)
int SplitALine(char * inputString, const char * seperator, StrList* items)
{
items->Clear();
......@@ -527,12 +525,12 @@ get device ids for the given device information
devInfo = "0:CPU-1 1:GPU-0 2:CPU-1"
means that the first device is CPU, the second device
is GPU-0, the third device is CPU.
>> devIDs - device sequence specified by devInfo
>> devIDs - device IDs specified by devInfo
<< return - number of devices
*/
int XDevManager::GetDeviceIDs(char * devInfo, int * devIDs)
{
XList * terms = new XList(1);
StrList* terms = new StrList(1);
SplitALine(devInfo, " ", terms);
for(int i = 0; i < terms->count; i++){
......@@ -569,7 +567,7 @@ int XDevManager::GetDeviceIDs(char * devInfo, int * devIDs)
return devCount;
}
/* show id sequence */
/* show device IDs */
void XDevManager::ShowDeviceIDs(char * devInfo, char * msg)
{
msg[0] = 0;
......
......@@ -236,6 +236,18 @@ extern XDevManager GDevs;
cudaSetDevice(devIDBackup); \
} \
#define CheckDev(a, b) \
{ \
if((a < 0 && b >= 0) || (a >= 0 && b < 0)){ \
fprintf(stderr, "[ERROR] (%s line %d): we must run the code on the same device (%d vs %d)\n", __FILENAME__, __LINE__, a, b); \
exit(1); \
} \
else if (a >= 0 && b >= 0 && a != b) { \
fprintf(stderr, "[ERROR] (%s line %d): we must run the code on the same device (%d vs %d)\n", __FILENAME__, __LINE__, a, b); \
exit(1); \
} \
} \
} /* end of the nts (NiuTrans.Tensor) namespace */
#endif
......@@ -51,7 +51,13 @@ bool CONST_TRUE = true;
int verboseLevel = 0;
bool useBLAS = false;
bool useCUDA = false;
#ifdef USE_CUDA
bool useCUDA = true;
#else
bool useCUDA = false;
#endif
FILE * tmpLog = NULL;
double myTime = 0;
......
......@@ -45,10 +45,6 @@ typedef int8_t __int8;
/* the nts (NiuTrans.Tensor) namespace */
namespace nts {
#if (__cplusplus >= 201103L || _MSC_VER >= 1700)
#define USE_CPP11
#endif
#define _XINLINE_
//#define DOUBELPRICSION
......@@ -159,7 +155,9 @@ extern bool useCUDA;
#define XPRINT7(VERBOSE,FILEH,STR,ARG,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7) {if(VERBOSE<=verboseLevel) {fprintf(FILEH,STR,ARG,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7);FFLUSH(FILEH);}}
#define XPRINT8(VERBOSE,FILEH,STR,ARG,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8) {if(VERBOSE<=verboseLevel) {fprintf(FILEH,STR,ARG,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8);FFLUSH(FILEH);}}
#define B2I(V) V==0?false:true
#define B2I(V) V == 0 ? false : true
#define MODX(a, b) int(b == 0 ? a : a - floor(double(a)/b) * b)
/* BLAS interfaces */
#ifdef DOUBELPRICSION
......
......@@ -31,15 +31,15 @@ namespace nts{
/* constructor */
template<HeapType hType, typename T>
XHeap<hType, T>::XHeap()
{
}
/* constructor */
template<HeapType hType, typename T>
XHeap<hType, T>::XHeap(int mySize, XMem * myMem)
{
mem = myMem;
size = mySize;
count = 0;
if (mem == NULL)
items = new HeapNode<T>[mySize];
else
mem->Alloc(mem->devID, mySize * sizeof(T));
Init(mySize, myMem);
}
/* deconstructor */
......@@ -50,6 +50,19 @@ XHeap<hType, T>::~XHeap()
}
template<HeapType hType, typename T>
void XHeap<hType, T>::Init(int mySize, XMem * myMem)
{
mem = myMem;
size = mySize;
count = 0;
if (mem == NULL)
items = new HeapNode<T>[mySize];
else
mem->Alloc(mem->devID, mySize * sizeof(T));
}
template<HeapType hType, typename T>
void XHeap<hType, T>::Clear(T initValue)
{
count = 0;
......@@ -89,10 +102,24 @@ _XINLINE_ HeapNode<T> XHeap<hType, T>::End()
template<HeapType hType, typename T>
_XINLINE_ void XHeap<hType, T>::Push(HeapNode<T> node)
{
//CheckNTErrors((count < size), "Heap is full!");
items[count] = node;
Up(count);
count++;
if (count < size) {
items[count] = node;
Up(count);
count++;
}
else if(count == size){
HeapNode<T> & item0 = items[0];
if (hType == MIN_HEAP && item0.value >= node.value)
return;
else if (hType == MAX_HEAP && item0.value <= node.value)
return;
items[0] = node;
Down(0);
}
else {
ShowNTErrors("Overflow of the heap!");
}
}
/* replace the top-most item and update the heap */
......@@ -107,7 +134,7 @@ _XINLINE_ void XHeap<hType, T>::ReplaceTop(HeapNode<T> node)
template<HeapType hType, typename T>
_XINLINE_ HeapNode<T> XHeap<hType, T>::Pop()
{
//CheckNTErrors((size > 0), "Empty heap!");
CheckNTErrors(count > 0, "Empty heap!");
HeapNode<T> node = items[0];
items[0] = items[count - 1];
count--;
......
......@@ -39,7 +39,7 @@ template <typename T>
struct HeapNode
{
/* node index */
int index;
long long index;
/* value of the node */
T value;
......@@ -52,9 +52,16 @@ struct HeapNode
HeapNode(int i, T v)
{
index = i;
index = (long long)i;
value = v;
};
HeapNode(void * i, T v)
{
index = (long long)i;
value = v;
}
};
/* a heap that keeps a data array of T */
......@@ -76,11 +83,17 @@ public:
public:
/* constructor */
XHeap();
/* constructor */
XHeap(int mySize, XMem * myMem = NULL);
/* deconstructor */
~XHeap();
/* initialization */
void Init(int mySize, XMem * myMem = NULL);
/* clear the data */
void Clear(T initValue);
......@@ -107,6 +120,9 @@ public:
/* move item k up the tree */
void Up(int k);
/* how many items are kept in the heap */
inline int Count() { return count; };
};
} /* end of the nts (NiuTrans.Tensor) namespace */
......
......@@ -300,9 +300,9 @@ void XLink::MakeLink(const XTensor * t1, const XTensor * t2, XTensor * h, int id
if(h == NULL)
return;
XList list(2);
list.Add(t1);
list.Add(t2);
TensorList list(2);
list.Add((XTensor*)t1);
list.Add((XTensor*)t2);
MakeLink(&list, h, id);
}
......@@ -320,10 +320,10 @@ void XLink::MakeLink(const XTensor * t1, const XTensor * t2, const XTensor * t3,
if (h == NULL)
return;
XList list(3);
list.Add(t1);
list.Add(t2);
list.Add(t3);
TensorList list(3);
list.Add((XTensor*)t1);
list.Add((XTensor*)t2);
list.Add((XTensor*)t3);
MakeLink(&list, h, id);
}
......@@ -334,7 +334,7 @@ create a hyper edge with a list of tensors and a output tensor
>> h - head tensor
>> id - id of the edge type
*/
void XLink::MakeLink(const XList * list, XTensor * h, int id)
void XLink::MakeLink(const TensorList * list, XTensor * h, int id)
{
/* forward */
XLink &income = h->income;
......@@ -368,7 +368,7 @@ create a hyper edge with a input tensors and a list of output tensors
>> list - a list of output tensors
>> id - id of the edge type
*/
void XLink::MakeLink(XTensor * t, XList * list, int id)
void XLink::MakeLink(XTensor * t, TensorList * list, int id)
{
/* forward */
for(int i = 0; i < list->count; i++){
......@@ -624,7 +624,7 @@ void XLink::CopyIncoming(const XTensor * reference, XTensor * target)
ClearIncoming(target);
int tailNum = reference->income.tailNum;
XList tails(tailNum);
TensorList tails(tailNum);
for(int i = 0; i < tailNum; i++){
XTensor * tail = (XTensor*)reference->income.tails[i];
tails.Add(tail);
......@@ -743,7 +743,7 @@ search for a node in a top-down manner by its name
>> top - the top most node
<< return - the node we found
*/
/*XTensor * XLink::SearchNode(XTensor * top, const char * name)
XTensor * XLink::SearchNode(XTensor * top, const char * name)
{
if(!strcmp(top->name, name))
return top;
......@@ -758,7 +758,7 @@ search for a node in a top-down manner by its name
}
return NULL;
}*/
}
} // namespace nts(NiuTrans.Tensor)
......
......@@ -138,17 +138,17 @@ struct XLink
static
void MakeLink(const XTensor * t1, const XTensor * t2, XTensor * h, int id);
/* create a hyper edge with two input tensors and a output tensor */
/* create a hyper edge with three input tensors and a output tensor */
static
void MakeLink(const XTensor * t1, const XTensor * t2, const XTensor * t3, XTensor * h, int id);
/* create a hyper edge with a list of input tensors and a output tensor */
static
void MakeLink(const XList * list, XTensor * h, int id);
void MakeLink(const TensorList * list, XTensor * h, int id);
/* create a hyper edge with a input tensors and a list of output tensors */
static
void MakeLink(XTensor * h, XList * list, int id);
void MakeLink(XTensor * h, TensorList * list, int id);
/* add a parameter */
static
......@@ -191,8 +191,8 @@ struct XLink
void ShowNode(FILE * file, XTensor * node);
/* search a node in a top-down manner by its name */
//static
//XTensor * SearchNode(XTensor * top, const char * name);
static
XTensor * SearchNode(XTensor * top, const char * name);
};
} // namespace nts(NiuTrans.Tensor)
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* Copyright (C) 2019, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
......@@ -15,32 +15,31 @@
* limitations under the License.
*/
/*
*
* Implementation of list that keeps data items
*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-04-17
* The first coding job this year!
*
*/
#ifndef __XLIST_H__
#define __XLIST_H__
/*
*
* Implementation of template list that keeps data items
*
* $Created by: HU Chi (huchinlp@foxmail.com)
*
*/
#include "XMem.h"
#include "XGlobal.h"
/* the nts (NiuTrans.Tensor) namespace */
namespace nts{
#ifndef __TensorList_H__
#define __TensorList_H__
typedef int (* ListCompare)(const void * item1, const void * item2);
/* the XList class */
class XList
{
/* the nts (NiuTrans.Tensor) namespace */
namespace nts {
/* the TensorListBase class */
template <typename T>
struct TensorListBase {
public:
/* data items */
void ** items;
T *items;
/* number of items */
int count;
......@@ -49,56 +48,88 @@ public:
int maxNum;
/* the memory pool for data array allocation */
XMem * mem;
/* indicates whether data items are integers */
bool isIntList;
XMem* mem;
public:
/* constructor */
XList();
TensorListBase();
/* constructor */
XList(int myMaxNum, bool isIntListOrNot = false);
TensorListBase(int myMaxNum);
/* constructor */
XList(int myMaxNum, XMem * myMem, bool isIntListOrNot = false);
TensorListBase(int myMaxNum, XMem* myMem);
/* de-constructor */
~XList();
/* utilities */
void Create(int myMaxNum, XMem * myMem);
void Add(const void * item);
void Add(void ** inputItems, int inputItemCount);
void AddList(XList * l);
void AddInt(int i);
void Insert(int pos, void * item);
void * GetItem(int i) const;
int GetItemInt(int i);
void SetItem(int i, void * item);
void SetItemInt(int i, int item);
int FindFirst(void * item);
~TensorListBase();
/* add an item into the list */
void Add(T&& item);
/* add an item into the list */
void Add(const T& item);
/* add a number of items into the list */
void Add(T* inputItems, int inputItemCount);
/* append a list to the current list */
void AddList(TensorListBase* l);
/* insert an item to the given position of the list */
void Insert(int pos, const T& item);
/* insert an item to the given position of the list */
void Insert(int pos, T&& item);
/* get the item at position i */
T& GetItem(int i) const;
/* set the item at position i */
void SetItem(int i, const T& item);
/* set the item at position i */
void SetItem(int i, T&& item);
/* find the position of the first matched item */
int FindFirst(const T& item);
/* clear the data array */
void Clear();
void ClearStringList();
void Sort(int itemSize, ListCompare comp);
/* sort the list */
void Sort(int itemSize);
/* reverse the list */
void Reverse();
/* remove the item at position i */
void Remove(int i);
XList * Copy(XMem * myMem);
/* copy the list */
TensorListBase* Copy(XMem* myMem);
/* shuffle the list */
void Shuffle(int nround = 10, int beg = -1, int len = 0);
/* short */
_XINLINE_ void * Get(int i) {return GetItem(i);};
_XINLINE_ int GetInt(int i) {return GetItemInt(i);};
_XINLINE_ void Set(int i, void * item) {SetItem(i, item);};
_XINLINE_ void SetInt(int i, int item) {SetItemInt(i, item);};
T& operator[] (int i) {
return GetItem(i);
};
T& Get(int i) { return GetItem(i); };
void Set(int i, T item) { SetItem(i, item); };
};
extern XList NULLList;
struct XTensor;
typedef TensorListBase<int> IntList;
typedef TensorListBase<char> CharList;
typedef TensorListBase<char*> StrList;
typedef TensorListBase<long> LongList;
typedef TensorListBase<float> FloatList;
typedef TensorListBase<short> ShortList;
typedef TensorListBase<void*> XList;
typedef TensorListBase<XTensor*> TensorList;
}
/* end of the nts (NiuTrans.Tensor) namespace */
} /* end of the nts (NiuTrans.Tensor) namespace */
#endif
#endif // __TensorList_H__
......@@ -34,6 +34,11 @@ namespace nts{
int testxmemid = 0;
void * recordp = NULL;
/*
for managing the memories
*/
XMemManager GMems;
XMem * GMem;
/* constructor */
......@@ -48,6 +53,7 @@ XMem::XMem()
strcpy(name, "xmem");
signature = 0;
mergeFreeOTF = true;
isInitialized = false;
}
/*
......@@ -58,7 +64,7 @@ constructor
>> myMode - mode of running the memory pool
UNI_FREE: free all the space at the end of using the memory pool
FREE_ON_THE_FLY: normal "malloc" and "free" mode
>> myBlockSize - size of memory block
>> myBlockSize - size of a memory block
>> myBlockNum - number of memory blocks
>> myBufSize - size of buffer
*/
......@@ -103,7 +109,7 @@ initialize it
>> myMode - mode of running the memory pool
UNI_FREE: free all the space at the end of using the memory pool
FREE_ON_THE_FLY: normal "malloc" and "free" mode
>> myBlockSize - size of memory block
>> myBlockSize - size of a memory block
>> myBlockNum - number of memory blocks
>> myBufSize - size of buffer
*/
......@@ -164,6 +170,7 @@ void XMem::Initialize(int myDevID, MEMPOOL_MODE myMode, MTYPE myBlockSize, int m
#endif
signature++;
isInitialized = true;
}
/* free memory */
......@@ -216,9 +223,9 @@ void XMem::Free(int myDevID, void * mem)
}
}
/*
get signature
<< return - return the signature
/*
get the signature
<< return - the signature
*/
MTYPE XMem::GetSignature()
{
......@@ -226,7 +233,7 @@ MTYPE XMem::GetSignature()
}
/*
use string as the name of the memory pool
set the name of the memory pool
>> myName - name of the memory pool
*/
void XMem::SetName(const char * myName)
......@@ -259,7 +266,7 @@ void XMem::SetDevice(int myDevID)
}
/*
switch to the device (with fast cuda execution mode) we want to work
switch to the device (with fast cuda execution mode) we intend to work on
>> myDevID - device id(-1: CPU memory, >=0: GPU device ID)
*/
void XMem::SetDeviceFast(int myDevID)
......@@ -275,7 +282,7 @@ void XMem::SetDeviceFast(int myDevID)
}
/*
run in static mode
run in the static mode
>> myIsStatic - specify if the memory allocation is static
*/
void XMem::SetStaticMode(bool myIsStatic)
......@@ -300,7 +307,7 @@ void XMem::SetComputationMode(bool myIsForComputation)
cublasDestroy(cublasHandle);
if(myIsForComputation)
CheckNTErrors((enum curandStatus)cublasCreate(&cublasHandle) == CURAND_STATUS_SUCCESS,
"Cannot create the cublas handle.");
"Cannot create the cublas handle.");
SetDevice(devIDBackup);
#endif
......@@ -316,11 +323,11 @@ void XMem::SetIndex(INT_64 indexSize, MTYPE minSizeFirst, int minSizeNum)
{
delete[] memIndex;
delete[] memIndex2;
delete[] minSizeIndex;
delete[] minSizeIndex;
nodeNum = indexSize;
nodeNumUsed = minSizeNum * 2;
indexEntryNum = minSizeNum;
nodeNum = indexSize;
nodeNumUsed = minSizeNum * 2;
indexEntryNum = minSizeNum;
memIndex = new MPieceNode[nodeNum];
memset(memIndex, 0, sizeof(MPieceNode) * nodeNum);
......@@ -328,12 +335,12 @@ void XMem::SetIndex(INT_64 indexSize, MTYPE minSizeFirst, int minSizeNum)
memIndex2 = new MPieceNode[nodeNum];
memset(memIndex2, 0, sizeof(MPieceNode) * nodeNum);
minSizeIndex = new MTYPE[indexEntryNum];
memset(minSizeIndex, 0, sizeof(MTYPE) * indexEntryNum);
minSizeIndex = new MTYPE[indexEntryNum];
memset(minSizeIndex, 0, sizeof(MTYPE) * indexEntryNum);
minSizeIndex[0] = minSizeFirst;
for(int i = 1; i < indexEntryNum; i++)
minSizeIndex[i] = minSizeIndex[i - 1] * 2;
minSizeIndex[0] = minSizeFirst;
for(int i = 1; i < indexEntryNum; i++)
minSizeIndex[i] = minSizeIndex[i - 1] * 2;
indexOffset = GetMSB(minSizeFirst);
}
......@@ -752,8 +759,8 @@ void * XMem::AllocStandard(int myDevID, MTYPE mySize, bool myIsRebuiltIndex)
/* if all index nodes are used, we rebuild the index to release the nodes that are free */
if(nodeNumUsed == nodeNum){
RebuildIndex();
CheckNTErrors(nodeNumUsed < nodeNum, "No enough index nodes for the memory pool!");
RebuildIndex();
CheckNTErrors(nodeNumUsed < nodeNum, "No enough index nodes for the memory pool!");
}
/*if(testxmemid == 30){
......@@ -956,8 +963,8 @@ release a piece of memory as "free"
*/
void XMem::ReleaseStandard(int myDevID, void * p, MTYPE size)
{
if(p == NULL)
return;
if(p == NULL)
return;
if(size <= minSizeIndex[0])
size = minSizeIndex[0];
......@@ -1087,7 +1094,7 @@ void XMem::RebuildIndex()
block->mem = NULL;
}
else{
/* if the block is in use, we build the index */
/* if the block is in use, we build the index */
int pieceCount = 0;
MTYPE size = 0;
MHeader * newLast = NULL;
......@@ -1488,4 +1495,179 @@ cublasHandle_t * XMem::GetCublasHandle()
#endif
/* constructor */
XMemManager::XMemManager()
{
Initialize();
}
/* de-constructor */
XMemManager::~XMemManager()
{
}
/* get memory size */
MTYPE XMemManager::GetAvailableMemory()
{
unsigned long freeMem = 0;
#if __APPLE__
int mib[2] = {CTL_HW, HW_MEMSIZE};
unsigned int namelen = sizeof(mib) / sizeof(mib[0]);
unsigned long long size;
size_t len = sizeof(size);
if (sysctl(mib, namelen, &size, &len, NULL, 0) < 0){
ShowNTErrors("Cannot get memory size on Mac!");
}
else{
return size;
}
#elif _WIN32
MEMORYSTATUSEX memoryStatus;
memoryStatus.dwLength = sizeof(memoryStatus);
if (GlobalMemoryStatusEx(&memoryStatus)){
freeMem = memoryStatus.ullAvailPhys;
}
#else
long pages = sysconf(_SC_AVPHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
freeMem = pages * page_size;
#endif
return (MTYPE)freeMem;
}
/* get GPU memory size */
MTYPE XMemManager::GetAvailableGPUMemory(int devID)
{
size_t freeMem = 0;
#ifdef USE_CUDA
size_t totalMem = 0;
cudaSetDevice(devID);
if (cudaMemGetInfo(&freeMem, &totalMem) != cudaSuccess){
XPRINT(0, stderr, "cannot get GPU memory information.");
exit(1);
}
#endif
return (MTYPE)freeMem;
}
/* get buffer size */
void XMemManager::GetBufferSize(MTYPE freeMem, MTYPE * myBufSize)
{
*myBufSize = 0;
if (freeMem >= MILLION * 128){
*myBufSize = MILLION * 32;
if (freeMem >= MILLION * 256){
*myBufSize = MILLION * 64;
if (freeMem >= MILLION * 512){
*myBufSize = MILLION * 128;
if (freeMem >= MILLION * 1024) {
*myBufSize = MILLION * 256;
if (freeMem >= MILLION * 2048)
*myBufSize = MILLION * 512;
}
}
}
}
}
/* initialize it and set the global memory information */
void XMemManager::Initialize()
{
srand((unsigned int)time(NULL));
Free();
/* CPUs (we actually do not care about how many CPUs are using) */
nCPUMem = 1;
/* GPUs */
nGPUMem = 0;
#ifdef USE_CUDA
if (cudaGetDeviceCount(&nGPUMem) != cudaSuccess) {
XPRINT(0, stderr, "cannot get GPU information.");
exit(1);
}
#endif
}
/* free it */
void XMemManager::Free()
{
for (int i = 0; i < MAX_CPU_MEM_NUM; i++)
CPUMems[i].Free();
for (int i = 0; i < MAX_GPU_MEM_NUM; i++)
GPUMems[i].Free();
}
/* get global memory pool */
XMem * XMemManager::GetMem(const int devID)
{
XMem * mem = NULL;
if (devID < 0){
if(!CPUMems[0].isInitialized){
MTYPE freeMem = GetAvailableMemory();
MTYPE myBufSize = 0;
GetBufferSize(freeMem, &myBufSize);
CPUMems[0].Initialize(-1, FREE_ON_THE_FLY,
MIN_BLOCK_SIZE_FOR_MEMPOOL,
MIN_BLOCK_NUM_FOR_MEMPOOL,
myBufSize);
}
mem = CPUMems;
}
else{
if (devID < nGPUMem){
if(!GPUMems[devID].isInitialized){
MTYPE freeMem = GetAvailableGPUMemory(devID);
MTYPE myBufSize = 0;
GetBufferSize(freeMem, &myBufSize);
GPUMems[devID].Initialize(devID, FREE_ON_THE_FLY,
MIN_BLOCK_SIZE_FOR_MEMPOOL,
MIN_BLOCK_NUM_FOR_MEMPOOL,
myBufSize);
}
mem = GPUMems + devID;
}
else{
XPRINT1(0, stderr, "Cannot get the memory (%d). Please check your device id!", devID);
}
}
return mem;
}
/* get global memory size */
int XMemManager::GetMemSize(const int devID, MTYPE * myBlockSize, int * myBlockNum, MTYPE * myBufSize)
{
XMem * mem = GetMem(devID);
int result = 0;
if (mem != NULL){
*myBlockSize = mem->maxBlockSize;
*myBlockNum = mem->blockNum;
*myBufSize = mem->bufSize;
result = 1;
}
return result;
}
/* show memory information */
void XMemManager::ShowMemInfo()
{
XPRINT(1, stderr, "Memory Information:\n");
MTYPE myBlockSize, myBufSize;
int myBlockNum;
for(int i = 0; i < nCPUMem; i++){
GetMemSize(-1, &myBlockSize, &myBlockNum, &myBufSize);
XPRINT3(1, stderr, " - id:-1 CPU, blockSize:%lld, blockNum:%d, bufSize:%lld\n", myBlockSize, myBlockNum, myBufSize);
}
for(int i = 0; i < nGPUMem; i++){
GetMemSize(i, &myBlockSize, &myBlockNum, &myBufSize);
XPRINT4(1, stderr, " - id:%2d GPU, blockSize:%lld, blockNum:%d, bufSize:%lld\n", i, myBlockSize, myBlockNum, myBufSize);
}
}
} /* end of the nts (NiuTrans.Tensor) namespace */
......@@ -39,6 +39,15 @@
#include <curand.h>
#endif
#ifdef __APPLE__
#include <sys/types.h>
#include <sys/sysctl.h>
#elif WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
/* the nts (NiuTrans.Tensor) namespace */
namespace nts{
......@@ -51,8 +60,10 @@ typedef long long INT_64;
#define CUDA_HOST_MALLOC 1
#define MY_PITCH CUDA_PITCH
#define BUF_PITCH 256
#define MIN_BLOCK_SIZE_FOR_MEMPOOL 128 * 1024 * 1024
#define MIN_BLOCK_SIZE_FOR_MEMPOOL 256 * 1024 * 1024
#define MIN_BLOCK_NUM_FOR_MEMPOOL 1024
#define MAX_CPU_MEM_NUM 16
#define MAX_GPU_MEM_NUM 16
/*
mode of runnig a memory pool
......@@ -202,6 +213,9 @@ public:
MTYPE curUsedPin;
MTYPE bufUsedPin;
/* indicates whether the memory pool is initialized */
bool isInitialized;
#ifdef USE_CUDA
/* handle used for cublas */
cublasHandle_t cublasHandle;
......@@ -413,6 +427,61 @@ public:
};
/*
a class for the management of memory
*/
class XMemManager
{
private:
/* cpu memory pool information */
XMem CPUMems[MAX_CPU_MEM_NUM];
/* number of cpu memory pools */
int nCPUMem;
/* gpu memory pool information */
XMem GPUMems[MAX_GPU_MEM_NUM];
/* number of gpu memory pools */
int nGPUMem;
public:
/* constructor */
XMemManager();
/* de-constructor */
~XMemManager();
/* get memory size */
MTYPE GetAvailableMemory();
/* get GPU memory size */
MTYPE GetAvailableGPUMemory(int devID);
/* get buffer size */
void GetBufferSize(MTYPE freeMem, MTYPE * myBufSize);
/* initialize it and set the global memory information */
void Initialize();
/* free it */
void Free();
/* get global memory pool */
XMem * GetMem(const int devID);
/* get global memory size */
int GetMemSize(const int devID, MTYPE * myBlockSize, int * myBlockNum, MTYPE * myBufSize);
/* show memory information */
void ShowMemInfo();
};
/* managing the memories */
extern XMemManager GMems;
extern XMem * GMem;
extern int testxmemid;
......
......@@ -59,6 +59,8 @@ const char * GetOPName(int type)
return "M_DIV";
else if (type == MATH_DIVDIM)
return "M_DIVDIM";
else if (type == MATH_MASK)
return "M_MASK";
else if (type == MATH_MATRIXMUL)
return "M_MATRIXMUL";
else if (type == MATH_MATRIXMULBATCHED)
......@@ -108,7 +110,7 @@ const char * GetOPName(int type)
else if (type == REDUCE_REDUCEVARIANCE)
return "R_REDUCEVARIANCE";
}
else if ((type & DATA_BASE) != 0) {
else if ((type & DATA_BASE) != 0) {
if (type == GETANDSET_CONVERTDATATYPE)
return "G_CONVERTDATATYPE";
else if (type == GETANDSET_INDEXTOONEHOT)
......@@ -118,8 +120,10 @@ const char * GetOPName(int type)
else if (type == GETANDSET_SELECT)
return "G_SELECT";
}
else if ((type & SHAPE_BASE) != 0) {
if (type == MOVEMENT_COPYINDEXED)
else if ((type & SHAPE_BASE) != 0){
if (type == GETANDSET_SELECT)
return "G_SELECT";
else if (type == MOVEMENT_COPYINDEXED)
return "M_COPYINDEXED";
else if (type == MOVEMENT_COPYVALUES)
return "M_COPYVALUES";
......
......@@ -48,7 +48,8 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#define MATH_CLIP MATH_ROUND + 1
#define MATH_DIV MATH_CLIP + 1
#define MATH_DIVDIM MATH_DIV + 1
#define MATH_MATRIXMUL MATH_DIVDIM + 1
#define MATH_MASK MATH_DIVDIM + 1
#define MATH_MATRIXMUL MATH_MASK + 1
#define MATH_MATRIXMULBATCHED MATH_MATRIXMUL + 1
#define MATH_MULTIPLY MATH_MATRIXMULBATCHED + 1
#define MATH_MULTIPLYDIM MATH_MULTIPLY + 1
......@@ -85,6 +86,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#define GETANDSET_SELECT GETANDSET_ONEHOTTOINDEX + 1
#define SHAPE_BASE DATA_BASE * 2
#define MOVEMENT SHAPE_BASE + 1
#define MOVEMENT_COPYINDEXED MOVEMENT + 1
#define MOVEMENT_COPYVALUES MOVEMENT_COPYINDEXED + 1
......
......@@ -146,7 +146,7 @@ run a set of jobs in parallel
>> jobArgs - the list of arguments for each job
>> sleepTime - time to sleep (in ms) for each round
*/
void XPRunner::Run(XList * jobFunctions, XList * jobArgs, float sleepTime)
void XPRunner::Run(TensorList * jobFunctions, TensorList * jobArgs, float sleepTime)
{
if(threadNum <= 0){
XPRINT(1, stderr, "Error! No threads were created!\n");
......@@ -195,7 +195,7 @@ void XPRunner::Run(XList * jobFunctions, XList * jobArgs, float sleepTime)
TFunction function = (TFunction)jobFunctions->GetItem(jobArgs->count - c);
/* the arguments that are passed to the function */
volatile XList * args = (XList*)jobArgs->GetItem(jobArgs->count - c);
volatile TensorList * args = (TensorList*)jobArgs->GetItem(jobArgs->count - c);
/* thread */
XThread * thread = threads + availableThreads[i];
......
......@@ -106,7 +106,7 @@ public:
void KillThreads();
/* run a set of jobs in parallel */
void Run(XList * jobFunctions, XList * jobArgs, float sleepTime = 0);
void Run(TensorList * jobFunctions, TensorList * jobArgs, float sleepTime = 0);
/* get the number of parallel jobs to run */
int GetJobNum(int size);
......
......@@ -42,7 +42,7 @@ job item used in queues
JobQueueNode::JobQueueNode()
{
job = NULL;
args = new XList(1);
args = new TensorList(1);
}
/* de-constructor */
......@@ -67,7 +67,7 @@ XQueue::XQueue(int mySize)
head = 0;
tail = 0;
isJobQueue = false;
jobDequeuerArgs = new XList(1);
jobDequeuerArgs = new TensorList(1);
jobDequeuerBreak = false;
runningJobCount = 0;
jobStream = NULL;
......@@ -188,8 +188,10 @@ void XQueue::RunJobConsumer(int jobDevID)
isJobQueue = true;
jobDequeuerArgs->Clear();
jobDequeuerArgs->Add(this);
jobDequeuerArgs->Add(jobDevID >= 0 ? devids + jobDevID : &cpuid);
// warning: this may cause unknown error
jobDequeuerArgs->Add((XTensor*)this);
jobDequeuerArgs->Add(jobDevID >= 0 ? (XTensor*)(devids + jobDevID) : (XTensor*)&cpuid);
jobDequeuer.function = (TFunction)DequeueJobs;
jobDequeuer.argv = jobDequeuerArgs;
......@@ -211,7 +213,7 @@ void XQueue::StopJobConsumer()
}
/* add a job item to process */
void XQueue::EnqueueJob(void * job, XList * jobArgs)
void XQueue::EnqueueJob(void * job, TensorList * jobArgs)
{
MUTEX_LOCK(jobQueueMutex);
runningJobCount++;
......@@ -225,7 +227,7 @@ void XQueue::EnqueueJob(void * job, XList * jobArgs)
}
/* job item consumer */
void XQueue::DequeueJobs(XList * args)
void XQueue::DequeueJobs(TensorList * args)
{
CheckNTErrors((args->count == 2), "Illegal arguments!");
......
......@@ -52,7 +52,7 @@ public:
void * job;
/* arguments of the job */
XList * args;
TensorList * args;
public:
/* constructor */
......@@ -102,7 +102,7 @@ private:
XThread jobDequeuer;
/* argument list of jobDequeuer */
XList * jobDequeuerArgs;
TensorList * jobDequeuerArgs;
/* indicates whether jobDequeuer stops */
bool jobDequeuerBreak;
......@@ -141,11 +141,11 @@ public:
void StopJobConsumer();
/* add a job item to process */
void EnqueueJob(void * job, XList * jobArgs);
void EnqueueJob(void * job, TensorList * jobArgs);
/* job item consumer */
static
void DequeueJobs(XList * args);
void DequeueJobs(TensorList * args);
/* get the break flag */
bool GetJobBreak();
......
......@@ -85,7 +85,7 @@ namespace nts{
#endif
typedef void (*TFunction) (volatile XList*);
typedef void (*TFunction) (volatile TensorList*);
/*
This is a class that wraps the standard implementation of threading
......@@ -133,7 +133,7 @@ public:
/* arguments (for the function to run) */
volatile
XList * argv;
TensorList * argv;
/* a flag to break */
volatile
......
......@@ -36,13 +36,9 @@
#include "arithmetic/MatrixMulBatched.h"
#include "arithmetic/Multiply.h"
#include "arithmetic/MultiplyDim.h"
#include "arithmetic/Negate.h"
#include "arithmetic/Sign.h"
#include "arithmetic/Sub.h"
#include "arithmetic/SubDim.h"
#include "arithmetic/Sum.h"
#include "arithmetic/SumByColumnTV.h"
#include "arithmetic/SumByColumnVT.h"
#include "arithmetic/SumDim.h"
#include "arithmetic/XTensorBLAS.h"
#include "arithmetic/MulAndShift.h"
......@@ -56,7 +52,6 @@
#include "math/Clip.h"
#include "math/Compare.h"
#include "math/Normalize.h"
#include "math/Power.h"
#include "math/ScaleAndShift.h"
#include "math/Unary.h"
......
......@@ -21,6 +21,7 @@
#include "../../XTensor.h"
#include "../../XName.h"
#include "../../XUtility.h"
#include "Div.h"
#include "Div.cuh"
#include "DivDim.h"
......@@ -41,12 +42,15 @@ where i is the index of the item
*/
void _Div(const XTensor * a, const XTensor * b, XTensor * c, DTYPE alpha, int leadingDim)
{
int leadingDimRDI = a->order - leadingDim - 1;
CheckNTErrors((a->unitNum <= c->unitNum && b->unitNum <= c->unitNum),
"Unmatched tensors in multiplication!");
CheckNTErrors((a->order == b->order && a->order == c->order),
"Unmatched tensors!");
CheckDev(a->devID, b->devID);
int leadingDimRDI = a->order - leadingDim - 1;
#ifdef USE_CUDA
if (a->devID >= 0 || b->devID >= 0 || c->devID >= 0) {
_CudaDiv(a, b, c, alpha, leadingDim);
......@@ -138,6 +142,23 @@ void _DivMe(XTensor * a, const XTensor * b, DTYPE alpha, int leadingDim)
_Div(a, b, a, alpha, leadingDim);
}
/*
element-wise division of two tensors (do it on site)
keep the result in the input tensor a and return nothing
a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the item
>> a - tensor a (where keep the result)
>> b - tensor b
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
*/
void DivMe(XTensor& a, const XTensor& b, DTYPE alpha, int leadingDim)
{
_Div(&a, &b, &a, alpha, leadingDim);
}
/*
return a dimension if the division is performed as DivDim (in more details in DivDim.h)
>> a - a tensor
......@@ -225,9 +246,8 @@ where i is the index of the item
>> c - result tensor
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink)
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -241,7 +261,7 @@ void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadin
/* call _Div function */
_Div(&a, &b, &c, 0, leadingDim);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIV);
XLink::AddParamToHead(&c, alpha);
......@@ -252,7 +272,7 @@ void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadin
/* call _DivDim function */
_DivDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIVDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -229,4 +229,4 @@ void _CudaDiv(const XTensor * a, const XTensor * b, XTensor * c, DTYPE alpha, in
#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)
\ No newline at end of file
} // namespace nts(NiuTrans.Tensor)
......@@ -40,6 +40,7 @@ a(i) = a(i)/b(i) + \alpha * a(i)
where i is the index of the element
*/
void _DivMe(XTensor * a, const XTensor * b, DTYPE alpha = 0.0, int leadingDim = 0);
void DivMe(XTensor & a, const XTensor & b, DTYPE alpha = 0.0, int leadingDim = 0);
/*
element-wise division of two tensors (return an XTensor structure)
......@@ -54,7 +55,7 @@ element-wise division of two tensors:
c(i) = a(i)/b(i) + \alpha * c(i)
where i is the index of the element
*/
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false);
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -19,10 +19,12 @@
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-15
*/
#include <math.h>
#include "Div.h"
#include "DivDim.h"
#include "DivDim.cuh"
#include "../../XName.h"
#include "../../XUtility.h"
#include "../movement/CopyValues.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
......@@ -42,6 +44,8 @@ i.e., a is divided with b by broadcasting
*/
void _DivDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE alpha)
{
n = MODX(n, a->order);
CheckNTErrors(a && b && c, "Empty tensor input!");
CheckNTErrors(a->unitNum == c->unitNum, "Unmatched tensors in division!");
CheckNTErrors(a->dataType == b->dataType && a->dataType == c->dataType,
......@@ -50,6 +54,8 @@ void _DivDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE alp
CheckNTErrors(!a->isSparse && !b->isSparse && !c->isSparse, "Dense tensors are required!");
CheckNTErrors(a->dimSize[n] == b->unitNum, "Wrong tensor size!");
CheckDev(a->devID, b->devID);
if(XTensor::IsSameShaped(a, b)){
_Div(a, b, c, alpha);
return;
......@@ -151,6 +157,8 @@ XTensor DivDim(const XTensor &a, const XTensor &b, int n, DTYPE alpha)
{
XTensor c(&a);
c.SetTMPFlag();
n = MODX(n, a.order);
/* call _Div function */
_DivDim(&a, &b, &c, n, alpha);
......@@ -175,9 +183,8 @@ i.e., a is divided with b by broadcasting
>> c - where we put result. we save it in a if c is NULL
>> n - the dimension index
>> alpha - the scaling factor
>> requireLink - if add operation to network
*/
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha, bool requireLink)
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -186,7 +193,7 @@ void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha,
/* call _Div function */
_DivDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad == true) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIVDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -59,7 +59,7 @@ c(i) = a/b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is divided with b by broadcasting
*/
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0, bool requireLink = false);
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -130,6 +130,17 @@ void _MaskMe(XTensor * a, const XTensor * mask, DTYPE alpha)
}
/*
mask entries of a given tensor (on site):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void MaskMe(XTensor& a, const XTensor& mask, DTYPE alpha)
{
_Mask(&a, &mask, &a, alpha);
}
/*
mask entries of a given tensor (return an XTensor structure):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
......@@ -140,16 +151,35 @@ XTensor Mask(const XTensor &a, const XTensor &mask, DTYPE alpha)
XTensor c(&a);
c.SetTMPFlag();
/* call _Sum function */
/* call _Mask function */
_Mask(&a, &mask, &c, alpha);
/* tensor connections */
//XLink::MakeLink(&a, &mask, &c, MATH_SUM);
//XLink::AddParamToHead(&c, alpha);
// TODO!!
ShowNTErrors("TODO!");
XLink::MakeLink(&a, &mask, &c, MATH_MASK);
XLink::AddParamToHead(&c, alpha);
return c;
}
/*
mask entries of a given tensor (return an XTensor structure):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void Mask(const XTensor &a, const XTensor &mask, XTensor &c, DTYPE alpha)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
}
/* call _Mask function */
_Mask(&a, &mask, &c, alpha);
if (c.enableGrad) {
XLink::MakeLink(&a, &mask, &c, MATH_MASK);
XLink::AddParamToHead(&c, alpha);
}
}
}
\ No newline at end of file
......@@ -16,10 +16,10 @@
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2019-04-24
* I'll attend several conferences and workshops in the following weeks -
* busy days :(
*/
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2019-04-24
* I'll attend several conferences and workshops in the following weeks -
* busy days :(
*/
#ifndef __MASK_H__
#define __MASK_H__
......@@ -28,21 +28,22 @@
namespace nts { // namespace nts(NiuTrans.Tensor)
/*
/*
mask entries of a given tensor:
c(i) = a(i) if mask(i) is non-zero
c(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void _Mask(const XTensor * a, const XTensor * mask, XTensor * c, DTYPE alpha);
void _Mask(const XTensor * a, const XTensor * mask, XTensor * c, DTYPE alpha = 0.0);
/*
/*
mask entries of a given tensor (on site):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void _MaskMe(XTensor * a, const XTensor * mask, DTYPE alpha);
void _MaskMe(XTensor * a, const XTensor * mask, DTYPE alpha = 0.0);
void MaskMe(XTensor & a, const XTensor & mask, DTYPE alpha = 0.0);
/*
mask entries of a given tensor (return an XTensor structure):
......@@ -52,7 +53,14 @@ where i is the index of the element
*/
XTensor Mask(const XTensor &a, const XTensor &mask, DTYPE alpha = 0.0);
/*
mask entries of a given tensor (return an XTensor structure):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void Mask(const XTensor &a, const XTensor &mask, XTensor &c, DTYPE alpha = 0.0);
} // namespace nts(NiuTrans.Tensor)
#endif // __MASK_H__
......@@ -106,9 +106,9 @@ void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
cBlockNum *= b->dimSizeRDI[i];
}
XList * aList = new XList(10);
XList * bList = new XList(10);
XList * cList = new XList(10);
TensorList * aList = new TensorList(10);
TensorList * bList = new TensorList(10);
TensorList * cList = new TensorList(10);
int aDimSize[2] = { -a->dimSizeRDI[1], a->dimSizeRDI[0] };
int bDimSize[2] = { -b->dimSizeRDI[1], b->dimSizeRDI[0] };
int cDimSize[2] = { -c->dimSizeRDI[1], c->dimSizeRDI[0] };
......@@ -200,7 +200,9 @@ void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
delete cList;
}
bool CheckMMulShape(const XTensor * a, MATRIX_TRANS_TYPE transposedA, const XTensor * b, MATRIX_TRANS_TYPE transposedB, XTensor * c)
bool CheckMMulShape(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
const XTensor * b, MATRIX_TRANS_TYPE transposedB,
XTensor * c)
{
if (!(a && b && c))
return false;
......@@ -229,10 +231,13 @@ bool CheckMMulShape(const XTensor * a, MATRIX_TRANS_TYPE transposedA, const XTen
dimSize[sub++] = bm;
for (int i = 0; i < order; i++) {
if (dimSize[i] != c->dimSize[i])
if (dimSize[i] != c->dimSize[i]) {
delete[] dimSize;
return false;
}
}
delete[] dimSize;
return true;
}
......@@ -355,11 +360,9 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
return c;
}
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink)
const XTensor &b, MATRIX_TRANS_TYPE transposedB, XTensor &c,
DTYPE alpha, DTYPE beta, XPRunner * parallelRunner)
{
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
......@@ -392,9 +395,9 @@ void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
}
/* call _MatrixMul function */
_MatrixMul(&a, transposedA, &b, transposedB, &c, alpha, 0, parallelRunner);
_MatrixMul(&a, transposedA, &b, transposedB, &c, alpha, beta, parallelRunner);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MATRIXMUL);
XLink::AddParamToHeadTrans(&c, transposedA);
......@@ -455,7 +458,7 @@ XTensor MatrixMul(const XTensor &a, const XTensor &b,
}
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink)
DTYPE alpha, XPRunner * parallelRunner)
{
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
......@@ -490,7 +493,7 @@ void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
/* call _MatrixMul function */
_MatrixMul(&a, X_NOTRANS, &b, X_NOTRANS, &c, alpha, 0, parallelRunner);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MATRIXMUL);
XLink::AddParamToHeadTrans(&c, X_NOTRANS);
......
......@@ -40,8 +40,11 @@ bj is the j-th element tensor of B, and c_{i,j} is the (i,j) elementtensor of th
C should be a tensor of z * x * n * m.
Obviously C = A * B performs normal matrix multiplication if A = y * z and B = x * y.
*/
void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA, const XTensor * b, MATRIX_TRANS_TYPE transposedB, XTensor * c,
DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0, XPRunner * parallelRunner = NULL);
void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
const XTensor * b, MATRIX_TRANS_TYPE transposedB,
XTensor * c,
DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0,
XPRunner * parallelRunner = NULL);
/*
matrix multiplication (return an XTensor structure) c = trans(a) * trans(b) * alpha
......@@ -56,22 +59,28 @@ bj is the j-th element tensor of B, and c_{i,j} is the (i,j) elementtensor of th
C should be a tensor of z * x * n * m.
Obviously C = A * B performs normal matrix multiplication if A = y * z and B = x * y.
*/
XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB,
TENSOR_DATA_TYPE dataType, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB,
XTensor &c, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false);
XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB,
DTYPE alpha = (DTYPE)1.0,
XPRunner * parallelRunner = NULL);
XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB,
TENSOR_DATA_TYPE dataType, DTYPE alpha = (DTYPE)1.0,
XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB,
XTensor &c,
DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0,
XPRunner * parallelRunner = NULL);
/* matrix multiplication with no transposition c = a * b * alpha*/
XTensor MatrixMul(const XTensor &a, const XTensor &b,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false);
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -54,15 +54,15 @@ void _MatrixMul2D(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
CheckNTErrors((a->order == 2 && b->order == 2 && c->order == 2),
"Input tensors must have a order = 2!");
int an = a->dimSize[0], am = a->dimSize[1];
int bn = b->dimSize[0], bm = b->dimSize[1];
int cn = c->dimSize[0], cm = c->dimSize[1];
int am2 = transposedA == X_TRANS ? an : am;
int an2 = transposedA == X_TRANS ? am : an;
int bm2 = transposedB == X_TRANS ? bn : bm;
int bn2 = transposedB == X_TRANS ? bm : bn;
int cm2 = cm;
int cn2 = cn;
int an = a->dimSize[0], am = a->dimSize[1];
int bn = b->dimSize[0], bm = b->dimSize[1];
int cn = c->dimSize[0], cm = c->dimSize[1];
int am2 = transposedA == X_TRANS ? an : am;
int an2 = transposedA == X_TRANS ? am : an;
int bm2 = transposedB == X_TRANS ? bn : bm;
int bn2 = transposedB == X_TRANS ? bm : bn;
int cm2 = cm;
int cn2 = cn;
CheckNTErrors((am2 == bn2 && an2 == cn2 && bm2 == cm2),
"Unmatched tensors in multiplication!");
......
......@@ -38,17 +38,23 @@ argument5: matrix a
argument6: matrix b
argument7: matrix c (c=a*b*\alpha + c*beta)
*/
void _MatrixMul2DMultiTheading(XList * args)
void _MatrixMul2DMultiTheading(TensorList * args)
{
int x1 = *(int*)args->GetItem(0);
int y1 = *(int*)args->GetItem(1);
int x2 = *(int*)args->GetItem(2);
int y2 = *(int*)args->GetItem(3);
XTensor * a = (XTensor*)args->GetItem(4);
XTensor * b = (XTensor*)args->GetItem(5);
XTensor * c = (XTensor*)args->GetItem(6);
DTYPE alpha = *(DTYPE*)args->GetItem(7);
DTYPE beta = *(DTYPE*)args->GetItem(8);
CheckNTErrors(args->count == 2, "invalid argument number!");
IntList * indexArgs = (IntList*)args->GetItem(0);
TensorList * matrixArgs = (TensorList*)args->GetItem(1);
CheckNTErrors(indexArgs->count == 4, "invalid argument number!");
CheckNTErrors(matrixArgs->count == 5, "invalid argument number!");
XTensor * a = matrixArgs->GetItem(0);
XTensor * b = matrixArgs->GetItem(1);
XTensor * c = matrixArgs->GetItem(2);
DTYPE alpha = *(DTYPE*)(matrixArgs->GetItem(3));
DTYPE beta = *(DTYPE*)(matrixArgs->GetItem(4));
int x1 = indexArgs->GetItem(0);
int y1 = indexArgs->GetItem(1);
int x2 = indexArgs->GetItem(2);
int y2 = indexArgs->GetItem(3);
#ifdef FAST_MATRIX
int am = a->dimSize[1];
......
......@@ -30,7 +30,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
matrix multiplication for a block (x1,y1) - (x2,y2)
where (x1,y1) is the upper-left corner and (x2,y2) is the bottom-right corner
*/
void _MatrixMul2DMultiTheading(XList * args);
void _MatrixMul2DMultiTheading(TensorList * args);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -154,7 +154,7 @@ void _MatrixMulBatchedCPU(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
const XTensor * b, MATRIX_TRANS_TYPE transposedB,
XTensor * c, DTYPE alpha, DTYPE beta)
{
CheckNTErrors((a && b && c), "Empty input tensors!");
CheckNTErrors(a && b && c, "Empty input tensors!");
CheckNTErrors(a->dataType == b->dataType && a->dataType == c->dataType,
"Input tensors should have the same data type!");
CheckNTErrors(a->order >= 2 && b->order >= 2 && c->order >= 2,
......@@ -227,9 +227,9 @@ c_i = trans(a_i) * trans(b_i) * \alpha + c_i * \beta for each i in [0,count-1]
>> alpha - scalar
>> beta - scalar
*/
void _MatrixMulBatchedCPU(const XList * a, MATRIX_TRANS_TYPE transposedA,
const XList * b, MATRIX_TRANS_TYPE transposedB,
XList * c, DTYPE alpha, DTYPE beta)
void _MatrixMulBatchedCPU(const TensorList * a, MATRIX_TRANS_TYPE transposedA,
const TensorList * b, MATRIX_TRANS_TYPE transposedB,
TensorList * c, DTYPE alpha, DTYPE beta)
{
CheckNTErrors(a && b && c, "Empty input lists!");
CheckNTErrors(a->count == b->count && a->count == c->count, "Input lists must be of the same size!");
......
......@@ -58,8 +58,8 @@ void _MatrixMulBatchedCPU(const XTensor * a, MATRIX_TRANS_TYPE transposedA, cons
matrix multiplication of the two tensors c = trans(a) * trans(b) * alpha + c * beta (for list inputs)
optimized for GPU
*/
void _MatrixMulBatchedCPU(const XList * a, MATRIX_TRANS_TYPE transposedA, const XList * b, MATRIX_TRANS_TYPE transposedB,
XList * c, DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0);
void _MatrixMulBatchedCPU(const TensorList * a, MATRIX_TRANS_TYPE transposedA, const TensorList * b, MATRIX_TRANS_TYPE transposedB,
TensorList * c, DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0);
/*
matrix multiplication of the two tensors (return an XTensor structure) c = trans(a) * trans(b) * alpha
......
......@@ -66,7 +66,7 @@ operation c = x * w + b MulAndShift
<< return - the result of matrix multiplication
*/
XTensor MulAndShift(const XTensor &x, const XTensor &w, const XTensor &b,
DTYPE alpha, XPRunner * parallelRunner)
DTYPE alpha, XPRunner * parallelRunner)
{
CheckNTErrors(x.dataType == w.dataType, "Input tensors should have the same data type!");
CheckNTErrors(x.order >= 2 && w.order >= 2, "Input tensors must have a order >= 2!");
......@@ -129,9 +129,6 @@ XTensor MulAndShift(const XTensor &x, const XTensor &w, const XTensor &b,
DelTensorBuf(tmp);
return c;
}
}
\ No newline at end of file
......@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
XTensor MulAndShift(const XTensor &x, const XTensor &w, const XTensor &b,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -21,6 +21,7 @@
#include "../../XTensor.h"
#include "../../XName.h"
#include "../../XUtility.h"
#include "Multiply.h"
#include "Multiply.cuh"
#include "MultiplyDim.h"
......@@ -41,12 +42,15 @@ where i is the index of the item
*/
void _Multiply(const XTensor * a, const XTensor * b, XTensor * c, DTYPE alpha, int leadingDim)
{
int leadingDimRDI = a->order - leadingDim - 1;
CheckNTErrors((a->unitNum <= c->unitNum && b->unitNum <= c->unitNum),
"Unmatched tensors in multiplication!");
CheckNTErrors((a->order == b->order && a->order == c->order),
"Unmatched tensors!");
CheckDev(a->devID, b->devID);
int leadingDimRDI = a->order - leadingDim - 1;
#ifdef USE_CUDA
if (a->devID >= 0 || b->devID >= 0 || c->devID >= 0) {
_CudaMultiply(a, b, c, alpha, leadingDim);
......@@ -139,6 +143,23 @@ void _MultiplyMe(XTensor * a, const XTensor * b, DTYPE alpha, int leadingDim)
_Multiply(a, b, a, alpha, leadingDim);
}
/*
element-wise product of two tensors (do it on site)
keep the result in the input tensor a and return nothing
a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the item
>> a - tensor a (where keep the result)
>> b - tensor b
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
*/
void MultiplyMe(XTensor& a, const XTensor& b, DTYPE alpha, int leadingDim)
{
_Multiply(&a, &b, &a, alpha, leadingDim);
}
/*
return a dimension if the multiplication is performed as MultiplyDim (in more details in MultiplyDim.h)
>> a - a tensor
......@@ -226,9 +247,8 @@ where i is the index of the item
>> c - result tensor
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink)
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -242,7 +262,7 @@ void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int l
/* call _Multiply function */
_Multiply(&a, &b, &c, 0, leadingDim);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLY);
XLink::AddParamToHead(&c, alpha);
......@@ -253,7 +273,7 @@ void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int l
/* call _MultiplyDim function */
_MultiplyDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -122,10 +122,10 @@ where i is the item index
*/
void _CudaMultiply(const XTensor * a, const XTensor * b, XTensor * c, DTYPE alpha, int leadingDim)
{
int leadingDimRDI = a->order - leadingDim - 1;
CheckNTErrors((a->unitNum <= c->unitNum && b->unitNum <= c->unitNum),
int leadingDimRDI = a->order - leadingDim - 1;
CheckNTErrors(a->unitNum <= c->unitNum && b->unitNum <= c->unitNum,
"Unmatched tensors in multiplication!");
CheckNTErrors((a->order == b->order && a->order == c->order), "Unmatched tensors!");
CheckNTErrors(a->order == b->order && a->order == c->order, "Unmatched tensors!");
int stride = 1;
int blockSizeA = 1;
......
......@@ -40,6 +40,7 @@ a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the element
*/
void _MultiplyMe(XTensor * a, const XTensor * b, DTYPE alpha = 0.0, int leadingDim = 0);
void MultiplyMe(XTensor & a, const XTensor & b, DTYPE alpha = 0.0, int leadingDim = 0);
/*
element-wise product of two tensors (return an XTensor structure)
......@@ -54,7 +55,7 @@ element-wise product of two tensors:
c(i) = a(i)*b(i) + \alpha * c(i)
where i is the index of the element
*/
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false);
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -19,6 +19,7 @@
* $Created by: JIANG Yufan (email: jiangyufan2018@outlook.com) 2018-08-14
*/
#include <math.h>
#include "Multiply.h"
#include "MultiplyDim.h"
#include "MultiplyDim.cuh"
......@@ -42,8 +43,10 @@ i.e., a is multiplied with b by broadcasting
>> n - the dimension index
>> alpha - the scaling factor
*/
void _MultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE alpha) {
void _MultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE alpha)
{
n = MODX(n, a->order);
CheckNTErrors(a && b && c, "Empty tensor input!");
CheckNTErrors(a->unitNum == c->unitNum, "Unmatched tensors in multiplication!");
CheckNTErrors(a->dataType == b->dataType && a->dataType == c->dataType,
......@@ -52,6 +55,8 @@ void _MultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYP
CheckNTErrors(!a->isSparse && !b->isSparse && !c->isSparse, "Dense tensors are required!");
CheckNTErrors(a->dimSize[n] == b->unitNum, "Wrong tensor size!");
CheckDev(a->devID, b->devID);
if(XTensor::IsSameShaped(a, b)){
_Multiply(a, b, c, alpha);
return;
......@@ -134,6 +139,24 @@ void _MultiplyDimMe(XTensor * a, const XTensor * b, int n, DTYPE alpha)
}
/*
tensor multiplication(do it on site)
make a new tensor to keep the result and return it
c = a * b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting
>> a - a tensor
>> b - another tensor whose size is equal to that of dimension n of a
>> n - the dimension index
>> alpha - the scaling factor
*/
void MultiplyDimMe(XTensor& a, const XTensor& b, int n, DTYPE alpha)
{
_MultiplyDim(&a, &b, &a, n, alpha);
}
/*
tensor multiplication (return an XTensor structure and make tensor connections)
make a new tensor to keep the result and return it
......@@ -151,6 +174,8 @@ XTensor MultiplyDim(const XTensor &a, const XTensor &b, int n)
XTensor c(&a);
c.SetTMPFlag();
n = MODX(n, a.order);
/* call _Multiply function */
_MultiplyDim(&a, &b, &c, n, 0);
......@@ -173,9 +198,8 @@ i.e., a is multiplied with b by broadcasting
>> b - another tensor whose size is equal to that of dimension n of a
>> c - where we put a * b + \alpha * c. we save it in a if c is NULL
>> n - the dimension index
>> requireLink - if add operation to network
*/
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink)
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -184,7 +208,7 @@ void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool req
/* call _Multiply function */
_MultiplyDim(&a, &b, &c, n, 0);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYDIM);
XLink::AddParamToHeadInt(&c, n);
......@@ -340,9 +364,8 @@ where some of dimensions of b can be of size 1
>> a - a tensor
>> b - another tensor that would be broadcasted
>> c - the resulting tensor
>> requireLink - if add operation to network
*/
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink)
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -351,7 +374,7 @@ void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requ
/* call _SumBroadcast function */
_MultiplyBroadcast(&a, &b, &c, 0);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYBROADCAST);
XLink::AddParamToHead(&c, 0);
......
......@@ -17,6 +17,7 @@
/*
* $Created by: JIANG Yufan (email: jiangyufan2018@outlook.com) 2018-08-14
* $Updated by: LinYe (email: linye2015@outlook.com) 2019-07-30 float16 added
*/
#include "../../XDevice.h"
......
......@@ -33,6 +33,7 @@ void _MultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYP
/* tensor multiplication a = a * b + \alpha * c where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting. we keep the result in the input tensor a and return nothing */
void _MultiplyDimMe(XTensor * a, const XTensor * b, int n, DTYPE alpha = 0.0);
void MultiplyDimMe(XTensor & a, const XTensor & b, int n, DTYPE alpha = 0.0);
/* tensor multiplication c = a * b where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting. We make a new tensor c to keep the result and return it */
......@@ -40,7 +41,7 @@ XTensor MultiplyDim(const XTensor &a, const XTensor &b, int n);
/* tensor multiplication c = a * b + \alpha * c where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting */
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink = false);
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0);
......@@ -50,7 +51,7 @@ void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE
XTensor MultiplyBroadcast(const XTensor &a, const XTensor &b);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink = false);
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c);
} // namespace nts(NiuTrans.Tensor)
......
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
#include "../../XTensor.h"
#include "../../XName.h"
#include "Negate.h"
#include "Negate.cuh"
namespace nts { // namespace nts(NiuTrans.Tensor)
/*
set every entry to its minus value
>> a - input tensor we are processing
>> b - output tensor we are processing
*/
void _Negate(const XTensor * a, XTensor * b)
{
#ifdef USE_CUDA
/* run it on GPUs */
if (a->devID >= 0) {
_CudaNegate(a, b);
return;
}
#endif
CheckNTErrors((XTensor::IsSameShaped(a, b)), "Input tensors should have the same type!");
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!");
DTYPE * d = (DTYPE*)a->data;
DTYPE * db = (DTYPE*)b->data;
for (int i = 0; i < a->unitNum; i++)
db[i] = -d[i];
}
/*
set every entry to its minus value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
*/
void _NegateMe(XTensor * a)
{
_Negate(a, a);
}
/*
set every entry to its minus value (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
<< return - the minus value of input tensor
*/
XTensor Negate(const XTensor & a)
{
XTensor b(&a);
b.SetTMPFlag();
/* call _Negate function */
_Negate(&a, &b);
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_NEGATE);
return b;
}
/*
set every entry to its minus value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> requireLink - if add operation to network
*/
void Negate(const XTensor & a, XTensor & b, bool requireLink)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
}
/* call _Negate function */
_Negate(&a, &b);
if (requireLink) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_NEGATE);
}
}
} // namespace nts(NiuTrans.Tensor)
\ No newline at end of file
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
#include "../../XDevice.h"
#include "../../XTensor.h"
#include "Negate.h"
#include "Negate.cuh"
namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
/*
set each entry to its negtive value (CUDA Kernel)
>> a - pointer to the input data array
>> b - pointer to the output data array
>> size - size of the data array
*/
template <class T>
__global__
void KernelNegate(T * a, T * b, int size)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < size)
b[i] = -a[i];
}
/*
set each entry to its negtive value
>> a - input tensor
>> b - output tensor
*/
void _CudaNegate(const XTensor * a, XTensor * b)
{
CheckNTErrors((XTensor::IsSameShaped(a, b)), "Input tensors should have the same type!");
CheckNTErrors((a->isSparse == false), "TODO!");
int gridSize[3];
int blockSize[3];
GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize);
dim3 blocks(gridSize[0]);
dim3 threads(blockSize[0]);
int devIDBackup;
ProtectCudaDev(a->devID, devIDBackup);
if (a->dataType == DEFAULT_DTYPE) {
KernelNegate << <blocks, threads >> >((DTYPE*)a->data, (DTYPE*)b->data, a->unitNum);
}
else if (a->dataType == X_FLOAT16) {
KernelNegate << <blocks, threads >> >((__half*)a->data, (__half*)b->data, a->unitNum);
}
else {
ShowNTErrors("TODO!");
}
BacktoCudaDev(a->devID, devIDBackup);
}
#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
#ifndef __NEGATE_CUH__
#define __NEGATE_CUH__
#include "Negate.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
#ifdef USE_CUDA
/* set each entry to its negtive value (CUDA Kernel) */
template <class T>
__global__
void KernelNegate(T * a, T * b, int size);
/* set each entry to its negtive value */
void _CudaNegate(const XTensor * a, XTensor * b);
#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)
#endif // __NEGATE_CUH__
\ No newline at end of file
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/
#ifndef __NEGATE_H__
#define __NEGATE_H__
#include "../../XTensor.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
/* set every entry to its minus value */
void _Negate(const XTensor * a, XTensor * b);
/*
set every entry to its minus value (do it on site)
keep the result in the input tensor a and return nothing
*/
void _NegateMe(XTensor * a);
/*
set every entry to its minus value (return an XTensor structure)
make a new tensor to keep the result and return it
*/
XTensor Negate(const XTensor & a);
/* set every entry to its minus value */
void Negate(const XTensor & a, XTensor & b, bool requireLink = false);
} // namespace nts(NiuTrans.Tensor)
#endif // __NEGATE_H__
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: LI Yinqiao (li.yin.qiao.2012@hotmail.com) 2018-7-11
*/
#include "../../XTensor.h"
#include "../../XName.h"
#include "Sign.h"
#include "Sign.cuh"
namespace nts { // namespace nts(NiuTrans.Tensor)
/*
set every entry to its sign value
>> a - input tensor we are processing
>> b - output tensor we are processing
*/
void _Sign(const XTensor * a, XTensor * b)
{
#ifdef USE_CUDA
/* run it on GPUs */
if (a->devID >= 0) {
_CudaSign(a, b);
return;
}
#endif
CheckNTErrors((XTensor::IsSameShaped(a, b)), "Input tensors should have the same type!");
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!");
DTYPE * d = (DTYPE*)a->data;
DTYPE * db = (DTYPE*)b->data;
for (int i = 0; i < a->unitNum; i++) {
if (d[i] > 0)
db[i] = 1.0F;
else if (d[i] == 0)
db[i] = 0.0F;
else
db[i] = -1.0F;
}
}
/*
set every entry to its sign value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
*/
void _SignMe(XTensor * a)
{
_Sign(a, a);
}
/*
set every entry to its sign value (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
<< return - the sign value of the input tensor
*/
XTensor Sign(const XTensor & a)
{
XTensor b(&a);
b.SetTMPFlag();
/* call _Sign function */
_Sign(&a, &b);
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_SIGN);
return b;
}
/*
set every entry to its sign value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> requireLink - if add operation to network
*/
void Sign(const XTensor & a, XTensor & b, bool requireLink)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
}
/* call _Sign function */
_Sign(&a, &b);
if (requireLink) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_SIGN);
}
}
} // namespace nts(NiuTrans.Tensor)
\ No newline at end of file
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论