section02.test.tex 4.5 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
% !Mode:: "TeX:GBK"

\def\CTeXPreproc{Created by ctex v0.2.13, don't edit!}
\documentclass[cjk,t,compress,12pt]{beamer}
%\documentclass{article}
%\usepackage{beamerarticle}
\usepackage{pstricks}
\usepackage{etex}
\usepackage{eso-pic,graphicx}
\usepackage{fancybox}
\usepackage{amsmath,amssymb}
\usepackage{setspace}
\usepackage{xcolor}
\usepackage{CJK}
\usepackage{tikz}
\usepackage{tikz-qtree}
\usepackage{hyperref}
\usepackage{array}

\usepgflibrary{arrows} % LATEX and plain TEX and pure pgf
\usetikzlibrary{arrows} % LATEX and plain TEX when using Tik Z
\usetikzlibrary{decorations}
\usetikzlibrary{arrows,shapes}

\usetikzlibrary{shadows} % LATEX and plain TEX when using Tik Z

\usetikzlibrary{positioning,fit,calc}

\usetikzlibrary{mindmap,backgrounds} % mind map

\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}

\setbeamertemplate{items}[ball]
\usefonttheme[onlymath]{serif}  % fout of math

\definecolor{ugreen}{rgb}{0,0.5,0}
\definecolor{lgreen}{rgb}{0.9,1,0.8}
\definecolor{xtgreen1}{rgb}{0.824,0.898,0.8}
\definecolor{xtgreen}{rgb}{0.914,0.945,0.902}
\definecolor{lightgray}{gray}{0.85}

\setbeamercolor{uppercol}{fg=white,bg=ugreen}
\setbeamercolor{lowercol}{fg=black,bg=xtgreen}

%\definecolor{ublue}{rgb}{0,0.298,0.525}
\definecolor{ublue}{rgb}{0.152,0.250,0.545}
\setbeamercolor{uppercolblue}{fg=white,bg=ublue}
\setbeamercolor{lowercolblue}{fg=black,bg=blue!10}


%\usetheme{default}
%\usetheme{Darmstadt}
%\usetheme{Madrid}
%\usetheme{Frankfurt}
%\usetheme{Dresden}
%\usetheme{Boadilla}
%\usecolortheme{dolphin}


\usefonttheme[onlylarge]{structurebold}

\begin{CJK}{GBK}{song}
\end{CJK}

\setbeamerfont*{frametitle}{size=\large,series=\bfseries}
\setbeamertemplate{navigation symbols}{\begin{CJK}{GBK}{hei} 第二章 词法、语法及概率思想基础 \hspace*{2em} 肖桐\&朱靖波 \end{CJK} \hspace*{2em} \today \hspace*{2em} \insertframenumber{}/\inserttotalframenumber}

\setbeamertemplate{itemize items}[circle] % if you want a circle
\setbeamertemplate{itemize subitem}[triangle] % if you wnat a triangle
\setbeamertemplate{itemize subsubitem}[ball] % if you want a ball

\begin{document}

\begin{CJK}{GBK}{you}

\title{\Large{词法、语法及概率思想基础}}
\author{\large{\textbf{肖桐\ \ 朱靖波}}}
\institute{
\blue{\url{xiaotong@mail.neu.edu.cn}} \black{} \\
\blue{\url{zhujingbo@mail.neu.edu.cn}} \black{} \\
\vspace{1.0em}
东北大学 自然语言处理实验室 \\
\blue{\underline{\url{http://www.nlplab.com}}} \black{} \\
\vspace{0.2cm}
\hspace{0.1cm} \includegraphics[scale=0.1]{../Figures/logo.pdf}
}
\date{}

\maketitle

\setlength{\leftmargini}{1em}
\setlength{\leftmarginii}{1em}


\section{中文分词}

%%% 进一步扩展,基于n-gram LM的方法
\begin{frame}{进一步扩展:基于$n$-gram语言模型的方法}

\begin{itemize}
\item 这种方法也被称作基于1-gram(统计)语言模型的方法\\
      所谓统计语言模型就是计算$\textrm{P}(w_1 w_2 ... w_m)$的概率
\end{itemize}

{\scriptsize
\tabcolsep 5pt
\begin{tabular}{l | l | l l l}
链式法则 & 1-gram & 2-gram & ... & $n$-gram \\
$\textrm{P}(w_1 w_2 ... w_n)=$ & $\textrm{P}(w_1 w_2 ... w_n)=$ & $\textrm{P}(w_1 w_2 ... w_n)=$ & ... & $\textrm{P}(w_1 w_2 ... w_n)=$ \\
$\textrm{P}(w_1) \times$ & $\textrm{P}(w_1) \times$ & $\textrm{P}(w_1) \times$ & ... & $\textrm{P}(w_1) \times$ \\
$\textrm{P}(w_2|w_1) \times$ & $\textrm{P}(w_2) \times$ & $\textrm{P}(w_2|w_1) \times$ & ... & $\textrm{P}(w_2|w_1) \times$ \\
$\textrm{P}(w_3|w_1 w_2) \times$ & $\textrm{P}(w_3) \times$ & $\textrm{P}(w_3|w_2) \times$ & ... & $\textrm{P}(w_3|w_1 w_2) \times$ \\
$\textrm{P}(w_4|w_1 w_2 w_3) \times$ & $\textrm{P}(w_4) \times$ & $\textrm{P}(w_4|w_3) \times$ & ... & $\textrm{P}(w_4|w_1 w_2 w_3) \times$ \\
... & ... & ... & ... & ... \\
$\textrm{P}(w_m|w_1...w_{m-1})$ & $\textrm{P}(w_m)$ & $\textrm{P}(w_m|w_{m-1})$ & ... & $\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$ \\
\end{tabular}
}

\begin{itemize}
\item<2-> \textbf{$n$-gram语言模型}的核心思想就是当前词($w_m$)出现的概率只依赖于前$n-1$个词($w_{m-n+1} ... w_{m-1}$)

\vspace{-2em}

\begin{eqnarray}
&   & \textrm{P}_{2\textrm{-gram}}(\textrm{'确实/现在/数据/很/多'}) \nonumber \\
& = & \textrm{P}(\textrm{'确实'}) \times \textrm{P}(\textrm{'现在'$|$'确实'}) \times \textrm{P}(\textrm{'数据'$|$'现在'}) \times  \nonumber \\
&   & \textrm{P}(\textrm{'很'$|$'数据'}) \times \textrm{P}(\textrm{'多'$|$'很'}) \nonumber
\end{eqnarray}

\vspace{-1em}

\item<2-> \textbf{训练} - 相对频率估计:$\textrm{P}(\textrm{'现在'$|$'确实'}) = \frac{count(\textrm{'确实 现在'})}{count(\textrm{'确实'})}$

\end{itemize}

\end{frame}

\subsection{统计思想}

\subsection{统计建模实例1:基于全切分的概率分词}

\end{CJK}
\end{document}