Commit e091bf56 by xiaotong

math description of perceptron

parent 4ba72cbb
......@@ -686,11 +686,11 @@ y = f(w \cdot x + b)
\begin{tikzpicture}
{\Large
\node [anchor=west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p1) at (0,0) {\black{\textbf{1. 人工神经网络的数学描述是什么}}\\\black{\textbf{\hspace{0.9em} 如何实现这种数学模型?}}};
\node [anchor=west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p1) at (0,0) {\black{\textbf{1. 人工神经网络的数学描述是什么}}\\\black{\textbf{\hspace{0.9em} 如何实现这种数学模型?}}};
\node [anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p21) at ([yshift=-1em]p1.south west) {\black{\textbf{2. 如何将简单的网络单元组合成更}}\\\black{\textbf{\hspace{0.9em} 强大的模型?}}};
\node [anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p22) at ([yshift=-1em]p21.south west) {\black{\textbf{3. 如何对模型中的参数进行学习}}\\\black{\textbf{\hspace{0.9em} 如何使用学习到的模型进行推断?}}};
\node [anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p22) at ([yshift=-1em]p21.south west) {\black{\textbf{3. 如何对模型中的参数进行学习}}\\\black{\textbf{\hspace{0.9em} 如何使用学习到的模型进行推断?}}};
}
\end{tikzpicture}
......@@ -702,6 +702,76 @@ y = f(w \cdot x + b)
\subsection{数学基础:张量计算}
%%%------------------------------------------------------------------------------------------------------------
%%% 人工神经元的函数形式
\begin{frame}{人工神经元即一个函数}
\begin{itemize}
\item 神经元:
\end{itemize}
\vspace{-1em}
\begin{center}
\begin{tikzpicture}
\node [anchor=center] (y) at (0,0) {\LARGE{$\textbf{y}$}};
\node [anchor=west] (eq) at (y.east) {\LARGE{$=$}};
\node [anchor=west] (func) at (eq.east) {\LARGE{$f$}};
\node [anchor=west] (brace01) at (func.east) {\LARGE{$($}};
\node [anchor=west] (x) at (brace01.east) {\LARGE{$\textbf{x}$}};
\node [anchor=west] (dot) at (x.east) {\LARGE{$\cdot$}};
\node [anchor=west] (w) at (dot.east) {\LARGE{$\textbf{w}$}};
\node [anchor=west] (plus) at (w.east) {\LARGE{$+$}};
\node [anchor=west] (b) at (plus.east) {\LARGE{$\textbf{b}$}};
\node [anchor=west] (brace02) at (b.east) {\LARGE{$)$}};
\visible<2->{
\node [anchor=center,fill=yellow!30] (x2) at (x) {\LARGE{$\textbf{x}$}};
\node [anchor=south] (xlabel) at ([yshift=1.5em]x.north) {输入};
\draw [<-] ([yshift=0.2em]x2.north) -- (xlabel.south);
}
\visible<3->{
\node [anchor=center,fill=green!20] (w2) at (w) {\LARGE{$\textbf{w}$}};
\node [anchor=north] (wlabel) at ([yshift=-1.5em]w.south) {参数(权重)};
\draw [<-] ([yshift=-0.2em]w2.south) -- (wlabel.north);
}
\visible<4->{
\node [anchor=center,fill=purple!20] (b2) at (b) {\LARGE{$\textbf{b}$}};
\node [anchor=south] (blabel) at ([yshift=1.3em]b.north) {偏移};
\draw [<-] ([yshift=0.2em]b2.north) -- (blabel.south);
}
\visible<5->{
\node [anchor=center,fill=blue!20] (func2) at (func) {\LARGE{$f$}};
\node [anchor=north] (funclabel) at ([yshift=-1.1em]func.south) {激活函数};
\draw [<-] ([yshift=-0.2em]func2.south) -- (funclabel.north);
}
\visible<6->{
\node [anchor=center,fill=red!20] (y2) at (y) {\LARGE{$\textbf{y}$}};
\node [anchor=south] (ylabel) at ([yshift=1.3em]y.north) {输出};
\draw [<-] ([yshift=0.2em]y2.north) -- (ylabel.south);
}
\end{tikzpicture}
\end{center}
\vspace{-1em}
\begin{itemize}
\item<7-> 以感知机为例
\begin{itemize}
\item 输入:$\textbf{x}=(x_0,...,x_n)$
\item 权重:$\textbf{w}=(w_0,...,w_n)$
\item 偏移:$\textbf{b} = (-\sigma)$
\item 激活函数:$f(z)=1$$z \ge 0$, 其它情况$f(z)=0$
\item 输出:$\textbf{y}=f(\textbf{x} \cdot \textbf{z} - \sigma)$
\end{itemize}
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
\subsection{多层神经网络}
%%%------------------------------------------------------------------------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论