Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
单韦乔
Toy-MT-Introduction
Commits
e091bf56
Commit
e091bf56
authored
Sep 01, 2019
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
math description of perceptron
parent
4ba72cbb
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
72 行增加
和
2 行删除
+72
-2
Section05-Neural-Networks-and-Language-Modeling/section05.tex
+72
-2
没有找到文件。
Section05-Neural-Networks-and-Language-Modeling/section05.tex
查看文件 @
e091bf56
...
...
@@ -686,11 +686,11 @@ y = f(w \cdot x + b)
\begin{tikzpicture}
{
\Large
\node
[anchor=west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow=
{
shadow xshift=0.2em,shadow yshift=-0.2em
}
] (p1) at (0,0)
{
\black
{
\textbf
{
1. 人工神经网络的数学描述是什么
?
}}
\\\black
{
\textbf
{
\hspace
{
0.9em
}
如何实现这种数学模型?
}}}
;
\node
[anchor=west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow=
{
shadow xshift=0.2em,shadow yshift=-0.2em
}
] (p1) at (0,0)
{
\black
{
\textbf
{
1. 人工神经网络的数学描述是什么
,
}}
\\\black
{
\textbf
{
\hspace
{
0.9em
}
如何实现这种数学模型?
}}}
;
\node
[anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow=
{
shadow xshift=0.2em,shadow yshift=-0.2em
}
] (p21) at ([yshift=-1em]p1.south west)
{
\black
{
\textbf
{
2. 如何将简单的网络单元组合成更
}}
\\\black
{
\textbf
{
\hspace
{
0.9em
}
强大的模型?
}}}
;
\node
[anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow=
{
shadow xshift=0.2em,shadow yshift=-0.2em
}
] (p22) at ([yshift=-1em]p21.south west)
{
\black
{
\textbf
{
3. 如何对模型中的参数进行学习
?
}}
\\\black
{
\textbf
{
\hspace
{
0.9em
}
如何使用学习到的模型进行推断?
}}}
;
\node
[anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow=
{
shadow xshift=0.2em,shadow yshift=-0.2em
}
] (p22) at ([yshift=-1em]p21.south west)
{
\black
{
\textbf
{
3. 如何对模型中的参数进行学习
,
}}
\\\black
{
\textbf
{
\hspace
{
0.9em
}
如何使用学习到的模型进行推断?
}}}
;
}
\end{tikzpicture}
...
...
@@ -702,6 +702,76 @@ y = f(w \cdot x + b)
\subsection
{
数学基础:张量计算
}
%%%------------------------------------------------------------------------------------------------------------
%%% 人工神经元的函数形式
\begin{frame}
{
人工神经元即一个函数
}
\begin{itemize}
\item
神经元:
\end{itemize}
\vspace
{
-1em
}
\begin{center}
\begin{tikzpicture}
\node
[anchor=center] (y) at (0,0)
{
\LARGE
{$
\textbf
{
y
}$}}
;
\node
[anchor=west] (eq) at (y.east)
{
\LARGE
{$
=
$}}
;
\node
[anchor=west] (func) at (eq.east)
{
\LARGE
{$
f
$}}
;
\node
[anchor=west] (brace01) at (func.east)
{
\LARGE
{$
(
$}}
;
\node
[anchor=west] (x) at (brace01.east)
{
\LARGE
{$
\textbf
{
x
}$}}
;
\node
[anchor=west] (dot) at (x.east)
{
\LARGE
{$
\cdot
$}}
;
\node
[anchor=west] (w) at (dot.east)
{
\LARGE
{$
\textbf
{
w
}$}}
;
\node
[anchor=west] (plus) at (w.east)
{
\LARGE
{$
+
$}}
;
\node
[anchor=west] (b) at (plus.east)
{
\LARGE
{$
\textbf
{
b
}$}}
;
\node
[anchor=west] (brace02) at (b.east)
{
\LARGE
{$
)
$}}
;
\visible
<2->
{
\node
[anchor=center,fill=yellow!30] (x2) at (x)
{
\LARGE
{$
\textbf
{
x
}$}}
;
\node
[anchor=south] (xlabel) at ([yshift=1.5em]x.north)
{
输入
}
;
\draw
[<-] ([yshift=0.2em]x2.north) -- (xlabel.south);
}
\visible
<3->
{
\node
[anchor=center,fill=green!20] (w2) at (w)
{
\LARGE
{$
\textbf
{
w
}$}}
;
\node
[anchor=north] (wlabel) at ([yshift=-1.5em]w.south)
{
参数(权重)
}
;
\draw
[<-] ([yshift=-0.2em]w2.south) -- (wlabel.north);
}
\visible
<4->
{
\node
[anchor=center,fill=purple!20] (b2) at (b)
{
\LARGE
{$
\textbf
{
b
}$}}
;
\node
[anchor=south] (blabel) at ([yshift=1.3em]b.north)
{
偏移
}
;
\draw
[<-] ([yshift=0.2em]b2.north) -- (blabel.south);
}
\visible
<5->
{
\node
[anchor=center,fill=blue!20] (func2) at (func)
{
\LARGE
{$
f
$}}
;
\node
[anchor=north] (funclabel) at ([yshift=-1.1em]func.south)
{
激活函数
}
;
\draw
[<-] ([yshift=-0.2em]func2.south) -- (funclabel.north);
}
\visible
<6->
{
\node
[anchor=center,fill=red!20] (y2) at (y)
{
\LARGE
{$
\textbf
{
y
}$}}
;
\node
[anchor=south] (ylabel) at ([yshift=1.3em]y.north)
{
输出
}
;
\draw
[<-] ([yshift=0.2em]y2.north) -- (ylabel.south);
}
\end{tikzpicture}
\end{center}
\vspace
{
-1em
}
\begin{itemize}
\item
<7-> 以感知机为例
\begin{itemize}
\item
输入:
$
\textbf
{
x
}
=(
x
_
0
,...,x
_
n
)
$
\item
权重:
$
\textbf
{
w
}
=(
w
_
0
,...,w
_
n
)
$
\item
偏移:
$
\textbf
{
b
}
=
(-
\sigma
)
$
\item
激活函数:
$
f
(
z
)=
1
$
当
$
z
\ge
0
$
, 其它情况
$
f
(
z
)=
0
$
\item
输出:
$
\textbf
{
y
}
=
f
(
\textbf
{
x
}
\cdot
\textbf
{
z
}
-
\sigma
)
$
\end{itemize}
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
\subsection
{
多层神经网络
}
%%%------------------------------------------------------------------------------------------------------------
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论