Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Tensor.LowPrecision
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
魏冰浩
Tensor.LowPrecision
Commits
b5c4aa4e
Commit
b5c4aa4e
authored
Jul 15, 2019
by
linye
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update divdim
parent
2ffea05e
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
253 行增加
和
2 行删除
+253
-2
source/tensor/core/arithmetic/DivDim.cu
+30
-0
source/tensor/test/TDivDim.cpp
+221
-0
source/tensor/test/Test.cpp
+2
-2
没有找到文件。
source/tensor/core/arithmetic/DivDim.cu
查看文件 @
b5c4aa4e
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-15
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-15
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-15 float16 added
*/
*/
#include "DivDim.cuh"
#include "DivDim.cuh"
...
@@ -168,6 +169,35 @@ void _CudaDivDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
...
@@ -168,6 +169,35 @@ void _CudaDivDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYPE
ShowNTErrors("Something is wrong!");
ShowNTErrors("Something is wrong!");
}
}
}
}
else if (a->dataType == X_FLOAT16) {
unsigned short temp = FloatToFloat16(alpha);
half alpha1 = *((half *)&temp);
if (stride > 1){
GDevs.GetCudaThread2D(a->devID, stride * blockNum, blockSize, MAX_INT, cudaGrids, cudaBlocks);
if (alpha == (DTYPE)0.0F)
KernelDivWithCol<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, alpha1);
else
KernelDivWithCol<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockSize, stride, blockSize * stride, blockNum, alpha1);
}
else if (stride == 1){
GDevs.GetCudaThread2D(a->devID, blockSize, blockNum, MAX_INT, cudaGrids, cudaBlocks);
if (alpha == (DTYPE)0.0F)
KernelDivWithRow<__half, false> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, alpha1);
else
KernelDivWithRow<__half, true> <<<dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1])>>>
((__half*)a->data, (__half*)b->data, (__half*)c->data,
blockNum, blockSize, alpha1);
}
else {
ShowNTErrors("Something is wrong!");
}
}
else {
else {
ShowNTErrors("TODO!");
ShowNTErrors("TODO!");
}
}
...
...
source/tensor/test/TDivDim.cpp
查看文件 @
b5c4aa4e
...
@@ -17,11 +17,13 @@
...
@@ -17,11 +17,13 @@
/*
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-14
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-14
* $Update by: Lin Ye (email: linye2015@outlook.com) 2019-07-15 float16 added
*/
*/
#include "TDivDim.h"
#include "TDivDim.h"
#include "../core/arithmetic/DivDim.h"
#include "../core/arithmetic/DivDim.h"
#include "../XTensor.h"
#include "../XTensor.h"
#include "../core/getandset/ConvertDataType.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
...
@@ -251,6 +253,207 @@ bool TestDivDim2()
...
@@ -251,6 +253,207 @@ bool TestDivDim2()
#endif // USE_CUDA
#endif // USE_CUDA
}
}
/*
case 3: float16 tensor division c = a/b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is divided with b by broadcasting.
In this case, (2, 4) / (2) = (2, 4), n = 0, alpha = 0.0.
*/
bool
TestDivDim3
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2) */
int
bOrder
=
1
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
]
=
{
1.0
F
,
-
1.0
F
};
DTYPE
answer
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
-
4.0
F
,
-
5.0
F
,
-
6.0
F
,
-
7.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sum function */
_DivDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
0
);
_DivDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
0
);
cUserHalfGPU
=
DivDim
(
aHalfGPU
,
bHalfGPU
,
0
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/*
case 4: float16 tensor division c = a/b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is divided with b by broadcasting.
In this case, (2, 4) / (2, 2) = (2, 4), n = 1.
*/
bool
TestDivDim4
()
{
/* a tensor of size (2, 4) */
int
aOrder
=
2
;
int
*
aDimSize
=
new
int
[
aOrder
];
aDimSize
[
0
]
=
2
;
aDimSize
[
1
]
=
4
;
int
aUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
aOrder
;
i
++
)
aUnitNum
*=
aDimSize
[
i
];
/* a tensor of size (2, 2) */
int
bOrder
=
2
;
int
*
bDimSize
=
new
int
[
bOrder
];
bDimSize
[
0
]
=
2
;
bDimSize
[
1
]
=
2
;
int
bUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
bOrder
;
i
++
)
bUnitNum
*=
bDimSize
[
i
];
DTYPE
aData
[
2
][
4
]
=
{
{
0.0
F
,
1.0
F
,
2.0
F
,
3.0
F
},
{
4.0
F
,
5.0
F
,
6.0
F
,
7.0
F
}
};
DTYPE
bData
[
2
][
2
]
=
{
{
1.0
F
,
-
1.0
F
},
{
-
1.0
F
,
1.0
F
}
};
DTYPE
answer
[
2
][
4
]
=
{
{
0.0
F
,
-
1.0
F
,
-
2.0
F
,
3.0
F
},
{
4.0
F
,
-
5.0
F
,
-
6.0
F
,
7.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
aGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
bGPU
=
NewTensor
(
bOrder
,
bDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
cMeGPU
=
NewTensor
(
aOrder
,
aDimSize
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
cUserGPU
;
/* create float16 tensor */
XTensor
aHalfGPU
;
XTensor
bHalfGPU
;
XTensor
cHalfGPU
;
XTensor
cMeHalfGPU
;
XTensor
cUserHalfGPU
;
/* Initialize variables */
aGPU
->
SetData
(
aData
,
aUnitNum
);
cMeGPU
->
SetData
(
aData
,
aUnitNum
);
bGPU
->
SetData
(
bData
,
bUnitNum
);
cGPU
->
SetZeroAll
();
/* convert data type from float to float16 */
aHalfGPU
=
ConvertDataType
(
*
aGPU
,
X_FLOAT16
);
bHalfGPU
=
ConvertDataType
(
*
bGPU
,
X_FLOAT16
);
cHalfGPU
=
ConvertDataType
(
*
cGPU
,
X_FLOAT16
);
cMeHalfGPU
=
ConvertDataType
(
*
cMeGPU
,
X_FLOAT16
);
/* call sum function */
_DivDim
(
&
aHalfGPU
,
&
bHalfGPU
,
&
cHalfGPU
,
1
);
_DivDim
(
&
cMeHalfGPU
,
&
bHalfGPU
,
1
);
cUserHalfGPU
=
DivDim
(
aHalfGPU
,
bHalfGPU
,
1
);
/* convert data type from float16 to float */
_ConvertDataType
(
&
cHalfGPU
,
cGPU
);
_ConvertDataType
(
&
cMeHalfGPU
,
cMeGPU
);
cUserGPU
=
ConvertDataType
(
cUserHalfGPU
,
X_FLOAT
);
/* check results */
gpuTest
=
cGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cMeGPU
->
CheckData
(
answer
,
aUnitNum
)
&&
cUserGPU
.
CheckData
(
answer
,
aUnitNum
);
/* destroy variables */
delete
aGPU
;
delete
bGPU
;
delete
cGPU
;
delete
cMeGPU
;
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
[]
aDimSize
;
delete
[]
bDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* other cases */
/* other cases */
/*
/*
TODO!!
TODO!!
...
@@ -280,6 +483,24 @@ bool TestDivDim()
...
@@ -280,6 +483,24 @@ bool TestDivDim()
else
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
/* case 3 test */
caseFlag
=
TestDivDim3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestDivDim4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/* other cases test */
/*
/*
TODO!!
TODO!!
...
...
source/tensor/test/Test.cpp
查看文件 @
b5c4aa4e
...
@@ -39,7 +39,7 @@ bool Test()
...
@@ -39,7 +39,7 @@ bool Test()
//wrong = !TestCopyIndexed() || wrong;
//wrong = !TestCopyIndexed() || wrong;
//wrong = !TestCopyValues() || wrong;
//wrong = !TestCopyValues() || wrong;
//wrong = !TestDiv() || wrong;
//wrong = !TestDiv() || wrong;
//
wrong = !TestDivDim() || wrong;
wrong
=
!
TestDivDim
()
||
wrong
;
//wrong = !TestExp() || wrong;
//wrong = !TestExp() || wrong;
//wrong = !TestGather() || wrong;
//wrong = !TestGather() || wrong;
//wrong = !TestLog() || wrong;
//wrong = !TestLog() || wrong;
...
@@ -82,7 +82,7 @@ bool Test()
...
@@ -82,7 +82,7 @@ bool Test()
//wrong = !TestCrossEntropy() || wrong;
//wrong = !TestCrossEntropy() || wrong;
//wrong = !TestDropout() || wrong;
//wrong = !TestDropout() || wrong;
wrong
=
!
TestHardTanH
()
||
wrong
;
//
wrong = !TestHardTanH() || wrong;
//wrong = !TestIdentity() || wrong;
//wrong = !TestIdentity() || wrong;
//wrong = !TestLogSoftmax() || wrong;
//wrong = !TestLogSoftmax() || wrong;
//wrong = !TestLoss() || wrong;
//wrong = !TestLoss() || wrong;
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论