TSpread.cpp 8.19 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-25
 */

#include "TSpread.h"
#include "../core/getandset/SetData.h"
#include "../core/movement/Spread.h"

namespace nts { // namespace nts(NiuTrans.Tensor)

/*
case 1: test _Spread function.
spread a collection tensor to source tensor.
*/
bool TestSpread1()
{
    /* a input tensor of size (2, 4, 3) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;
    sDimSize[1] = 4;
    sDimSize[2] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];
    
    /* a data tensor of size (2, 4, 3) */
    int dataOrder = 3;
    int * dataDimSize = new int[dataOrder];
    dataDimSize[0] = 2;
    dataDimSize[1] = 4;
    dataDimSize[2] = 3;

    int dataUnitNum = 1;
    for (int i = 0; i < dataOrder; i++)
        dataUnitNum *= dataDimSize[i];
    
    int srcIndex[2] = {0, 1};
    int tgtIndex[2] = {0, 1};


    DTYPE data[2][4][3] = { { {1.0F, 1.0F, 1.0F},
                              {0.0F, 1.0F, 2.0F},
                              {1.0F, 1.0F, 1.0F},
                              {1.0F, 1.0F, 1.0F} },
                            { {1.0F, 1.0F, 1.0F},
                              {3.0F, 4.0F, 5.0F},
                              {1.0F, 1.0F, 1.0F},
                              {1.0F, 1.0F, 1.0F} } };

    DTYPE answer[4][4][3] = { { {1.0F, 1.0F, 1.0F},
                                {0.0F, 1.0F, 2.0F},
                                {1.0F, 1.0F, 1.0F},
                                {1.0F, 1.0F, 1.0F} },
                              { {1.0F, 1.0F, 1.0F},
                                {3.0F, 4.0F, 5.0F},
                                {1.0F, 1.0F, 1.0F},
                                {1.0F, 1.0F, 1.0F} },
                              { {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F} },
                              { {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F}, 
                                {0.0F, 0.0F, 0.0F} },
    };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensor(sOrder, sDimSize);
    XTensor * modify = NewTensor(dataOrder, dataDimSize);

    /* Initialize variables */
    _SetDataFixedFloat(s, 0.0F);
    modify->SetData(data, dataUnitNum);

    /* call _Spread function */
    _Spread(s, modify, 0, srcIndex, 2, tgtIndex);
    
    /* check results */
    cpuTest = s->CheckData(answer, sUnitNum, 1e-5F);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * modifyGPU = NewTensor(dataOrder, dataDimSize, X_FLOAT, 1.0F, 0);

    /* Initialize variables */
    _SetDataFixedFloat(sGPU, 0.0F);
    modifyGPU->SetData(data, dataUnitNum);
    
    /* call _Spread function */
    _Spread(sGPU, modifyGPU, 0, srcIndex, 2, tgtIndex);
    
    gpuTest = sGPU->CheckData(answer, sUnitNum, 1e-5F);

    /* destroy variables */
    delete s;
    delete modify;
    delete sGPU;
    delete modifyGPU;
    delete[] sDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete[] sDimSize;

    return cpuTest;
#endif // USE_CUDA
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* 
case 2: test _SpreadForGather function 
spread a collection tensor to source tensor
*/
bool TestSpread2()
{
    /* a input tensor of size (3, 3) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 3;
    sDimSize[1] = 3;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a output tensor of size (2, 3) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 2;
    tDimSize[1] = 3;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];
        
    /* a index tensor of size (2) */
    int indexOrder = 1;
    int * indexDimSize = new int[indexOrder];
    indexDimSize[0] = 2;

    int indexUnitNum = 1;
    for (int i = 0; i < indexOrder; i++)
        indexUnitNum *= indexDimSize[i];

    DTYPE sData[3][3] = { {0.0F, 0.0F, 2.0F},
                          {2.0F, 1.0F, 3.0F},
                          {2.0F, 2.0F, 4.0F} };

    DTYPE tData[2][3] = { {0.0F, -1.0F, 2.0F},
                          {1.0F, 2.0F, 0.0F} };

    DTYPE answer[3][3] = { {0.0F, -1.0F, 4.0F},
                           {2.0F, 1.0F, 3.0F},
                           {3.0F, 4.0F, 4.0F} };

    int dim = 0;
    int indexSize = 2;
    int srcIndex[2] = {0, 2};
185
    int tgtIndex[2] = {0, 1};
186 187 188 189 190 191 192 193

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s1 = NewTensor(sOrder, sDimSize);
    XTensor * s2 = NewTensor(sOrder, sDimSize);
    XTensor * t = NewTensor(tOrder, tDimSize);
194 195
    XTensor * sIndex = NewTensor(indexOrder, indexDimSize, X_INT);
    XTensor * cIndex = NewTensor(indexOrder, indexDimSize, X_INT);
196 197 198 199 200

    /* initialize variables */
    s1->SetData(sData, sUnitNum);
    s2->SetData(sData, sUnitNum);
    t->SetData(tData, tUnitNum);
201 202
    sIndex->SetData(srcIndex, indexSize);
    cIndex->SetData(tgtIndex, indexSize);
203 204

    /* call _SpreadForGather function */
205 206
    _SpreadForCopyIndexed(s1, t, dim, sIndex, cIndex, 1);
    _SpreadForGather(s2, t, sIndex);
207 208 209 210 211 212 213 214 215 216 217 218 219

    /* check results */
    cpuTest = s1->CheckData(answer, tUnitNum) &&
              s2->CheckData(answer, tUnitNum);
    
#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU1 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * sGPU2 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensor(sOrder, tDimSize, X_FLOAT, 1.0F, 0);
220 221
    XTensor * sIndexGPU = NewTensor(indexOrder, indexDimSize, X_INT, 1.0F, 0);
    XTensor * cIndexGPU = NewTensor(indexOrder, indexDimSize, X_INT, 1.0F, 0);
222 223 224 225 226

    /* initialize variables */
    sGPU1->SetData(sData, sUnitNum);
    sGPU2->SetData(sData, sUnitNum);
    tGPU->SetData(tData, tUnitNum);
227 228
    sIndexGPU->SetData(srcIndex, indexSize);
    cIndexGPU->SetData(tgtIndex, indexSize);
229 230

    /* call _SpreadForGather function */
231 232
    _SpreadForCopyIndexed(sGPU1, tGPU, dim, sIndex, cIndex, 1);
    _SpreadForGather(sGPU2, tGPU, sIndexGPU);
233 234 235 236 237 238 239 240 241

    /* check results */
    gpuTest = sGPU1->CheckData(answer, tUnitNum) && 
              sGPU2->CheckData(answer, tUnitNum);

    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
242 243
    delete sIndex;
    delete cIndex;
244 245 246
    delete sGPU1;
    delete sGPU2;
    delete tGPU;
247 248
    delete sIndexGPU;
    delete cIndexGPU;
249 250 251 252 253 254 255 256 257 258
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s1;
    delete s2;
    delete t;
259 260
    delete sIndex;
    delete cIndex;
261 262 263 264 265 266 267 268
    delete[] sDimSize;
    delete[] tDimSize;
    delete[] indexDimSize;

    return cpuTest;
#endif // USE_CUDA
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/* other cases */
/*
TODO!!
*/

/* test for Spread Function */
bool TestSpread()
{
    XPRINT(0, stdout, "[TEST Spread] spread a collection tensor to source tensor \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestSpread1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
    }

} // namespace nts(NiuTrans.Tensor)