ReduceMax.cpp 4.34 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/

22 23
#include "../../XTensor.h"
#include "../../XName.h"
xiaotong committed
24 25 26 27 28 29
#include "ReduceMax.h"
#include "ReduceMax.cuh"

namespace nts{ // namespace nts(NiuTrans.Tensor)

/* 
30 31
get the max value of the items along a dimension of the tensor

xiaotong committed
32 33 34 35
>> input - the input tensor
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
*/
36
void _ReduceMax(const XTensor * input, XTensor * output, int dim)
xiaotong committed
37 38
{
    CheckNTErrors((input->devID == output->devID || (input->devID < 0 && output->devID < 0)), 
39
                  "This code must be run on the same device!");
xiaotong committed
40 41 42 43 44 45
    CheckNTErrors((input && output), "Empty input or output tensors!");
    CheckNTErrors((input->order == output->order + 1), "Incorrect tensor sizes!");
    CheckNTErrors((input->order > dim && dim >=0), "Illegal dimension to reduce!");
    CheckNTErrors((input->dataType == output->dataType), "Unmatched data types!");
	
	int dimRDI = input->order - dim - 1;
xiaotong committed
46 47
    CheckNTErrors(dimRDI >= 0, "Wrong dimension!");

xiaotong committed
48 49 50
    for(int i = 0; i < input->order; i++){
        if(i < dimRDI){
            CheckNTErrors((input->dimSizeRDI[i] == output->dimSizeRDI[i]), 
51
                          "Unmatched tensors!");
xiaotong committed
52 53 54
        }
        else if(i > dimRDI){
            CheckNTErrors((input->dimSizeRDI[i] == output->dimSizeRDI[i - 1]), 
55
                          "Unmatched tensors!");
xiaotong committed
56 57 58 59 60
        }
    }

    if(input->devID >= 0){
#ifdef USE_CUDA
61
        _CudaReduceMax(input, output, dim);
xiaotong committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#endif
    }
    else{
        CheckNTErrors((input->dataType == DEFAULT_DTYPE), "TODO!");

        int stride = 1;
        int strideNum = input->dimSizeRDI[dimRDI];
        int blockSize = 1;
        int blockNum = 1;
        for (int i = 0; i < input->order; i++) {
            if (i < dimRDI)
                stride *= input->dimSizeRDI[i];
            else if (i > dimRDI)
                blockNum *= input->dimSizeRDI[i];
        }
        blockSize = stride * strideNum;

        for(int k = 0; k < blockNum; k++){
            DTYPE * ip = (DTYPE*)input->data + blockSize * k;
            DTYPE * op = (DTYPE*)output->data + stride * k;
            for(int i = 0; i < stride; i++){
                DTYPE max = FLOAT_MIN;
                DTYPE * ipe = ip + blockSize;
                for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                    DTYPE v = *ipb;
                    if(max < v)
                        max = v;
                }
                *(op + i) = max;
            }
        }
    }
}

96
/* 
xiaotong committed
97
get the max value of the items along a dimension of the tensor (return an XTensor structure).
98 99 100 101 102 103 104 105
make a new tensor to keep the result and return it

>> input - the input tensor
>> dim - the dimension where the reduction is performed on
<< return - the max value of the items along a dimension of the tensor
*/
XTensor ReduceMax(const XTensor &input, int dim)
{
106
    CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
107 108 109
	
    int order = input.order - 1;
    int * dimSize = new int[order];
110
    for(int i = 0; i < order; i++){
111 112
        if(i < dim)
            dimSize[i] = input.dimSize[i];
113
        else if(i >= dim)
114 115 116
            dimSize[i] = input.dimSize[i + 1];
    }

117 118
    float dr = (!input.isSparse) ? 1.0F : input.denseRatio;
    XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem);
xiaotong committed
119
    output.SetTMPFlag();
120 121 122

    /* call _ReduceMax function */
    _ReduceMax(&input, &output, dim);
123
    
124 125
    /* tensor connection */
    XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMAX);
126
    XLink::AddParamToHeadInt(&output, dim);
127

128 129 130
    /* destroy variables */
    delete[] dimSize;

131 132 133
    return output;
}

xiaotong committed
134
} // namespace nts(NiuTrans.Tensor)