TIdentity.cpp 5.92 KB
Newer Older
linye committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-29
*/

#include "../XUtility.h"
#include "TIdentity.h"

namespace nts { // namespace nts(NiuTrans.Tensor)

/*
case 1: test Identity function.
Identity function: y = x 
*/
bool TestIdentity1()
{
    /* a tensor of size (2, 3) */
    int order = 2;
    int * dimSize = new int[order];
    dimSize[0] = 2;
    dimSize[1] = 3;

    int unitNum = 1;
    for (int i = 0; i < order; i++)
        unitNum *= dimSize[i];

    DTYPE xData[2][3] = { {0.0F, 1.0F, 2.0F}, 
                          {0.5F, 0.7F, 1.4F} };
    DTYPE answer[2][3] = { {0.0F, 1.0F, 2.0F}, 
                           {0.5F, 0.7F, 1.4F} };

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * x = NewTensor(order, dimSize);
    XTensor * y = NewTensor(order, dimSize);
    XTensor yUser;

    /* initialize variables */
    x->SetData(xData, unitNum);
    y->SetZeroAll();

    /* call Identity function */
    _Identity(x, y);
    yUser = Identity(*x);
    
    /* check result */
65
    cpuTest = y->CheckData(answer, unitNum, 1e-4F) && yUser.CheckData(answer, unitNum, 1e-4F);
linye committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * xGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);
    XTensor * yGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);
    XTensor yUserGPU;

    /* initialize variables */
    xGPU->SetData(xData, unitNum);
    yGPU->SetZeroAll();

    /* call Identity function */
    _Identity(xGPU, yGPU);
    yUserGPU = Identity(*xGPU);
    
    /* check result */
85
    gpuTest = yGPU->CheckData(answer, unitNum, 1e-4F) && yUserGPU.CheckData(answer, unitNum, 1e-4F);
linye committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

    /* destroy variables */
    delete x;
    delete y;
    delete xGPU;
    delete yGPU;
    delete[] dimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete x;
    delete y;
    delete[] dimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 2: test IdentityBackward function.
IdentityBackward function: dE/dx = dE/dy * dy/dx = dE/dy
In this case, lossName=CROSSENTROPY.
*/
bool TestIdentity2()
{
    /* a tensor of size (2, 3) */
    int order = 2;
    int * dimSize = new int[order];
    dimSize[0] = 1;
    dimSize[1] = 3;

    int unitNum = 1;
    for (int i = 0; i < order; i++)
        unitNum *= dimSize[i];

    DTYPE xData[3] = {1.0F, 1.0F, 2.0F};
    DTYPE yAnswer[3] = {1.0F, 1.0F, 2.0F};
124
    DTYPE dedyData[3] = {0.0F, 0.0F, -0.5F};
linye committed
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    DTYPE dedxAnswer[3] = {0.0F, 0.0F, -0.5F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * x = NewTensor(order, dimSize);
    XTensor * y = NewTensor(order, dimSize);
    XTensor * dedy = NewTensor(order, dimSize);
    XTensor * dedx = NewTensor(order, dimSize);

    /* initialize variables */
    x->SetData(xData, unitNum);
    y->SetZeroAll();
    dedx->SetZeroAll();
140
    dedy->SetData(dedyData, unitNum);
linye committed
141 142 143 144 145

    /* call Identity function */
    _Identity(x, y);

    /* call IdentityBackward function */
146
    _IdentityBackward(y, x, dedy, dedx);
linye committed
147 148
    
    /* check result */
149 150
    cpuTest = y->CheckData(yAnswer, unitNum, 1e-4F) && 
              dedx->CheckData(dedxAnswer, unitNum, 1e-4F);
linye committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

        /* create tensors */
    XTensor * xGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);
    XTensor * yGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);
    XTensor * dedyGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);
    XTensor * dedxGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0);

    /* initialize variables */
    xGPU->SetData(xData, unitNum);
    yGPU->SetZeroAll();
    dedxGPU->SetZeroAll();
166
    dedyGPU->SetData(dedyData, unitNum);
linye committed
167 168 169 170 171

    /* call Identity function */
    _Identity(xGPU, yGPU);

    /* call IdentityBackward function */
172
    _IdentityBackward(yGPU, xGPU, dedyGPU, dedxGPU);
linye committed
173 174
    
    /* check result */
175 176
    gpuTest = yGPU->CheckData(yAnswer, unitNum, 1e-4F) && 
              dedxGPU->CheckData(dedxAnswer, unitNum, 1e-4F);
linye committed
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    /* destroy variables */
    delete x;
    delete y;
    delete dedx;
    delete dedy;
    delete xGPU;
    delete yGPU;
    delete dedxGPU;
    delete dedyGPU;
    delete[] dimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete x;
    delete y;
    delete dedx;
    delete dedy;
    delete[] dimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* other cases */
/*
    TODO!!
*/

/* test for Identity Function */
bool TestIdentity()
{
    XPRINT(0, stdout, "[TEST Identity] identity function and its backward computation \n");
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestIdentity1();

    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

    /* case 2 test */
    caseFlag = TestIdentity2();

    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

    /* other cases test */
    /*
    TODO!!
    */

    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
}

} // namespace nts(NiuTrans.Tensor)