Clip.cpp 3.59 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: Lin Ye (email: linye2015@outlook.com) 2018-08-03
*/

#include "../../XTensor.h"
#include "../../XName.h"
#include "Clip.h"
#include "Clip.cuh"

namespace nts { // namespace nts(NiuTrans.Tensor)

/*
set every entry to its clip value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> lower - the lower border
>> upper - the upper border
*/
void _Clip(const XTensor * a, XTensor * b, DTYPE lower, DTYPE upper)
{
#ifdef USE_CUDA
	/* run it on GPUs */
	if (a->devID >= 0) {
		_CudaClip(a, b, lower, upper);
		return;
	}
#endif

	CheckNTErrors((XTensor::IsSameShaped(a, b)), "Input tensors should have the same type!");
	CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!");

	DTYPE * d = (DTYPE*)a->data;
	DTYPE * db = (DTYPE*)b->data;
	for (int i = 0; i < a->unitNum; i++) {
		if (d[i] > upper)
			db[i] = upper;
		else if (d[i] < lower)
			db[i] = lower;
		else
			db[i] = d[i];
	}
}

/*
set every entry to its clip value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
>> lower - the lower border
>> upper - the upper border
*/
void _ClipMe(XTensor * a, DTYPE lower, DTYPE upper)
{
	_Clip(a, a, lower, upper);
}

/*
set every entry to its clip value (return a XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
>> lower - the lower border
>> upper - the upper border
<< return - the clip value of the input tensor
*/
XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper)
{
	XTensor b(&a);
xiaotong committed
84
	b.SetTMPFlag();
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	/* call _Clip function */
	_Clip(&a, &b, lower, upper);

	/* tensor connections */
	XLink::MakeLink(&a, NULL, &b, MATH_CLIP);
	XLink::AddParamToHead(&b, lower);
	XLink::AddParamToHead(&b, upper);

	return b;
}

/*
backward computation

dE/dx = dE/dy * dy/dx

hard tanh: y =  upper    if x > upper
x    if lower <= x <= upper
lower    if x< lower

and dy/dx =  1    if lower <= x <= upper
0    otherwise

>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
>> lossName - type of loss function, e.g., cross entropy
*/
void _ClipBackward(XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx, DTYPE lower, DTYPE upper) 
{
    
#ifdef USE_CUDA
    if (x->devID >= 0) {
        _CudaClipBackward(y, x, dedy, dedx, lower, upper);
        return;
}
#endif

    if (x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE) {
        DTYPE * dedyp = (DTYPE*)dedy->data;
        DTYPE * dedxp = (DTYPE*)dedx->data;
        DTYPE * ip = (DTYPE*)x->data;
        int size = y->unitNum;

        /* dE/dx = dE/dy * dy/dx */
        for (int i = 0; i < size; i++) {
            DTYPE s = ip[i];
            if (s > upper || s < lower)
                dedxp[i] = 0;
            else
                dedxp[i] = dedyp[i];
        }
    }
    else
        ShowNTErrors("TODO!");
}

} // namespace nts(NiuTrans.Tensor)